Effect of Renewable Energy on Co2 Emission in Sub Saharan Africa

Authors

  • Olayemi Babawole Familusi Department of Sociology, University of Ibadan, Ibadan, Nigeria. Author
  • Oluwaseun David Omoyeni Ladoke Akintola University of Technology Ogbomoso; Nigeria. Author
  • Osinachi Macdonald Samchuks Michael Okpara University of Agriculture, Umudike, Nigeria. Author
  • Adetayo Olaniyi Adeniran Department of Logistics and Transport Technology, Federal University of Technology, Akure, Nigeria. Author

DOI:

https://doi.org/10.31181/sa22202431

Keywords:

Renewable, Carbon dioxide, Emission, Sub sahara Africa

Abstract

This study examined the effect of renewable energy on CO2 emissions in a group of forty-five nations in Sub-Saharan Africa using the data spanned from 1980 and 2020. It is pertinent to note that renewable energy usage can be felt in industrialization; therefore, industrialization as a variable was captured alongside. For this, a two-step system GMM estimator was employed, which accounts for endogeneity while ignoring variable bias. The study found that higher industry value additions resulted in increased CO2 emissions, whereas increased renewable power generation resulted in less environmental damage. If the increase in renewable power generation is causal, it cuts carbon emissions by 0.22 percent. Furthermore, it was discovered that the usage of renewable energy mediates the link between industry value additions and CO2 emissions. It was recommended that authorities of SSA countries should encourage the usage of renewables through various policies and programs.

References

‎[1] ‎ Paredis, E. (2011). Sustainability transitions and the nature of technology. Foundations of science, 16(2–‎‎3), 195–225. DOI:10.1007/s10699-010-9197-4‎

‎[2] ‎ Dogaru, L. (2017). Environmental change and its effects. Curentul juridic, 69(2), 38–43.‎

‎[3] ‎ Hellström, T. (2007). Dimensions of environmentally sustainable innovation: the structure of eco-‎innovation concepts. Sustainable development, 15(3), 148–159. DOI:10.1002/sd.309‎

‎[4] ‎ Fussler, C., & James, P. (1996). Driving eco-innovation: a breakthrough discipline for innovation and ‎sustainability. Pitman Publishing. https://cir.nii.ac.jp/crid/1130000797240038400‎

‎[5] ‎ James, P. (1997). The sustainability cycle: a new tool for product development and sesign. The journal of ‎sustainable product design, (2), 52–57. http://www.cfsd.org.uk/journal/archive/97jspd1.pdf‎

‎[6] ‎ Rennings, K. (2000). Redefining innovation - Eco-innovation research and the contribution from ‎ecological economics. Ecological economics, 32(2), 319–332. DOI:10.1016/S0921-8009(99)00112-3‎

‎[7] ‎ Iwata, H., Okada, K., & Samreth, S. (2012). Empirical study on the determinants of CO2 emissions: ‎Evidence from OECD countries. Applied economics, 44(27), 3513–3519. DOI:10.1080/00036846.2011.577023‎

‎[8] ‎ Solarin, S. A. (2014). Tourist arrivals and macroeconomic determinants of CO2 emissions in Malaysia. ‎Anatolia, 25(2), 228–241. DOI:10.1080/13032917.2013.868364‎

‎[9] ‎ Chin, M. Y., Puah, C. H., Teo, C. L., & Joseph, J. (2018). The determinants of co2 emissions in Malaysia: ‎a new aspect. International journal of energy economics and policy, 8(1), 190–194.‎

‎[10] ‎ Sadikov, A., Kasimova, N., Isaeva, A., Khachaturov, A., & Salahodjaev, R. (2020). Pollution, energy and ‎growth: evidence from post-communist countries. International journal of energy economics and policy, ‎‎10(6), 656–661.‎

‎[11] ‎ Chaabouni, S., & Saidi, K. (2017). The dynamic links between carbon dioxide (CO2) emissions, health ‎spending and GDP growth: a case study for 51 countries. Environmental research, 158, 137–144. ‎DOI:10.1016/j.envres.2017.05.041‎

‎[12] ‎ Saboori, B., Sulaiman, J., & Mohd, S. (2012). Economic growth and CO 2 emissions in Malaysia: a ‎cointegration analysis of the Environmental Kuznets Curve. Energy policy, 51, 184–191. ‎DOI:10.1016/j.enpol.2012.08.065‎

‎[13] ‎ Jalil, A., & Mahmud, S. F. (2009). Environment Kuznets curve for CO2 emissions: a cointegration ‎analysis for China. Energy policy, 37(12), 5167–5172. DOI:10.1016/j.enpol.2009.07.044‎

‎[14] ‎ Ahmad, N., Du, L., Lu, J., Wang, J., Li, H. Z., & Hashmi, M. Z. (2017). Modelling the CO2 emissions and ‎economic growth in Croatia: is there any environmental Kuznets curve? Energy, 123, 164–172. ‎DOI:10.1016/j.energy.2016.12.106‎

‎[15] ‎ Pata, U. K. (2018). The influence of coal and noncarbohydrate energy consumption on CO2 emissions: ‎revisiting the environmental Kuznets curve hypothesis for Turkey. Energy, 160, 1115–1123. ‎DOI:10.1016/j.energy.2018.07.095‎

‎[16] ‎ Lacheheb, M., Rahim, A. S. A., & Sirag, A. (2015). Economic growth and carbon dioxide emissions: ‎investigating the environmental kuznets curve hypothesis in Algeria. International journal of energy ‎economics and policy, 5(4), 1125–1132.‎

‎[17] ‎ Bah, M. M., Abdulwakil, M. M., & Azam, M. (2020). Income heterogeneity and the Environmental ‎Kuznets Curve hypothesis in Sub-Saharan African countries. GeoJournal, 85(3), 617–628. ‎DOI:10.1007/s10708-019-09985-1‎

‎[18] ‎ Shahbaz, M., Hye, Q. M. A., Tiwari, A. K., & Leitão, N. C. (2013). Economic growth, energy ‎consumption, financial development, international trade and CO2 emissions in Indonesia. Renewable ‎and sustainable energy reviews, 25, 109–121.‎

‎[19] ‎ Sharif Hossain, M. (2011). Panel estimation for CO2 emissions, energy consumption, economic ‎growth, trade openness and urbanization of newly industrialized countries. Energy policy, 39(11), 6991–‎‎6999. DOI:10.1016/j.enpol.2011.07.042‎

‎[20] ‎ Mirzaei, M., & Bekri, M. (2017). Energy consumption and CO2 emissions in Iran, 2025. Environmental ‎research, 154, 345–351. DOI:10.1016/j.envres.2017.01.023‎

‎[21] ‎ Zuo, Z., Guo, H., & Cheng, J. (2020). An LSTM-STRIPAT model analysis of China’s 2030 CO2 emissions ‎peak. Carbon management, 11(6), 577–592. DOI:10.1080/17583004.2020.1840869‎

‎[22] ‎ Nugraha, A. T., & Osman, N. H. (2019). CO2 emissions, economic growth, energy consumption, and ‎household expenditure for Indonesia: evidence from cointegration and vector error correction model. ‎International journal of energy economics and policy, 9(1), 291–298. DOI:10.32479/ijeep.7295‎

‎[23] ‎ Zoundi, Z. (2017). CO2 emissions, renewable energy and the Environmental Kuznets Curve, a panel ‎cointegration approach. Renewable and sustainable energy reviews, 72, 1067–1075. ‎DOI:10.1016/j.rser.2016.10.018‎

‎[24] ‎ Shafiei, S., & Salim, R. A. (2014). Non-renewable and renewable energy consumption and CO2 ‎emissions in OECD countries: a comparative analysis. Energy policy, 66, 547–556. ‎DOI:10.1016/j.enpol.2013.10.064‎

‎[25] ‎ Dogan, E., & Seker, F. (2016). Determinants of CO2 emissions in the European Union: the role of ‎renewable and non-renewable energy. Renewable energy, 94, 429–439. ‎https://doi.org/10.1016/j.renene.2016.03.078‎

‎[26] ‎ Saidi, K., & Omri, A. (2020). The impact of renewable energy on carbon emissions and economic ‎growth in 15 major renewable energy-consuming countries. Environmental research, 186, 109567. ‎https://doi.org/10.1016/j.envres.2020.109567‎

‎[27] ‎ Salahuddin, M., Habib, M. A., Al-Mulali, U., Ozturk, I., Marshall, M., & Ali, M. I. (2020). Renewable ‎energy and environmental quality: a second-generation panel evidence from the Sub Saharan Africa ‎‎(SSA) countries. Environmental research, 191, 110094. DOI:10.1016/j.envres.2020.110094‎

‎[28] ‎ Sadorsky, P. (2009). Renewable energy consumption, CO2 emissions and oil prices in the G7 countries. ‎Energy economics, 31(3), 456–462. DOI:10.1016/j.eneco.2008.12.010‎

‎[29] ‎ Sebri, M., & Ben-Salha, O. (2014). On the causal dynamics between economic growth, renewable ‎energy consumption, CO2 emissions and trade openness: fresh evidence from BRICS countries. ‎Renewable and sustainable energy reviews, 39, 14–23. DOI:10.1016/j.rser.2014.07.033‎

‎[30] ‎ Danish, Baloch, M. A., Mahmood, N., & Zhang, J. W. (2019). Effect of natural resources, renewable ‎energy and economic development on CO 2 emissions in BRICS countries. Science of the total ‎environment, 678, 632–638. DOI:10.1016/j.scitotenv.2019.05.028‎

‎[31] ‎ Tiwari, A. K. (2011). A structural VAR analysis of renewable energy consumption, real GDP and CO2 ‎emissions: evidence from India. Economics bulletin, 31(2), 1793–1806.‎

‎[32] ‎ Boontome, P., Therdyothin, A., & Chontanawat, J. (2017). Investigating the causal relationship ‎between non-renewable and renewable energy consumption, CO2 emissions and economic growth in ‎Thailand. Energy procedia, 138, 925–930. DOI:10.1016/j.egypro.2017.10.141‎

‎[33] ‎ Dong, K., Hochman, G., Zhang, Y., Sun, R., Li, H., & Liao, H. (2018). CO2 emissions, economic and ‎population growth, and renewable energy: empirical evidence across regions. Energy economics, 75, ‎‎180–192. DOI:10.1016/j.eneco.2018.08.017‎

‎[34] ‎ Dong, F., Wang, Y., Su, B., Hua, Y., & Zhang, Y. (2019). The process of peak CO2 emissions in ‎developed economies: a perspective of industrialization and urbanization. Resources, conservation and ‎recycling, 141, 61–75. DOI:10.1016/j.resconrec.2018.10.010‎

‎[35] ‎ Mahmoodi, M. (2017). The relationship between economic growth, renewable energy, and CO2 ‎emissions: Evidence from panel data approach. International journal of energy economics and policy, 7(6), ‎‎96–102.‎

‎[36] ‎ Abbasi, K. R., Adedoyin, F. F., Abbas, J., & Hussain, K. (2021). The impact of energy depletion and ‎renewable energy on CO2 emissions in Thailand: fresh evidence from the novel dynamic ARDL ‎simulation. Renewable energy, 180, 1439–1450. DOI:10.1016/j.renene.2021.08.078‎

‎[37] ‎ Jebli, M. Ben, & Youssef, S. Ben. (2017). The role of renewable energy and agriculture in reducing CO2 ‎emissions: evidence for North Africa countries. Ecological indicators, 74, 295–301. ‎https://doi.org/10.1016/j.ecolind.2016.11.032‎

‎[38] ‎ Waheed, R., Chang, D., Sarwar, S., & Chen, W. (2018). Forest, agriculture, renewable energy, and CO2 ‎emission. Journal of cleaner production, 172, 4231–4238. https://doi.org/10.1016/j.jclepro.2017.10.287‎

‎[39] ‎ Bhattacharya, M., Awaworyi Churchill, S., & Paramati, S. R. (2017). The dynamic impact of renewable ‎energy and institutions on economic output and CO2 emissions across regions. Renewable energy, 111, ‎‎157–167. DOI:10.1016/j.renene.2017.03.102‎

‎[40] ‎ Nathaniel, S. P., & Iheonu, C. O. (2019). Carbon dioxide abatement in Africa: the role of renewable and ‎non-renewable energy consumption. Science of the total environment, 679, 337–345. ‎DOI:10.1016/j.scitotenv.2019.05.011‎

‎[41] ‎ Xu, B., & Lin, B. (2015). How industrialization and urbanization process impacts on CO2 emissions in ‎China: evidence from nonparametric additive regression models. Energy economics, 48, 188–202. ‎DOI:10.1016/j.eneco.2015.01.005‎

‎[42] ‎ Liu, X., & Bae, J. (2018). Urbanization and industrialization impact of CO2 emissions in China. Journal ‎of cleaner production, 172, 178–186. DOI:10.1016/j.jclepro.2017.10.156‎

‎[43] ‎ Li, K., & Lin, B. (2015). Impacts of urbanization and industrialization on energy consumption/CO2 ‎emissions: does the level of development matter? Renewable and sustainable energy reviews, 52, 1107–‎‎1122. DOI:10.1016/j.rser.2015.07.185‎

‎[44] ‎ Shahbaz, M., Salah Uddin, G., Ur Rehman, I., & Imran, K. (2014). Industrialization, electricity ‎consumption and CO2 emissions in Bangladesh. Renewable and sustainable energy reviews, 31, 575–586. ‎DOI:10.1016/j.rser.2013.12.028‎

‎[45] ‎ Ullah, S., Ozturk, I., Usman, A., Majeed, M. T., & Akhtar, P. (2020). On the asymmetric effects of ‎premature deindustrialization on CO2 emissions: evidence from Pakistan. Environmental science and ‎pollution research, 27(12), 13692–13702. DOI:10.1007/s11356-020-07931-0‎

‎[46] ‎ Mahmood, H., Alkhateeb, T. T. Y., & Furqan, M. (2020). Industrialization, urbanization and CO2 ‎emissions in Saudi Arabia: asymmetry analysis. Energy reports, 6, 1553–1560. ‎DOI:10.1016/j.egyr.2020.06.004‎

‎[47] ‎ Li, T., Li, Y., An, D., Han, Y., Xu, S., Lu, Z., & Crittenden, J. (2019). Mining of the association rules ‎between industrialization level and air quality to inform high-quality development in China. Journal ‎of environmental management, 246, 564–574. DOI:10.1016/j.jenvman.2019.06.022‎

‎[48] ‎ Hong, S., Lee, Y., Yoon, S. J., Lee, J., Kang, S., Won, E. J., … & Shin, K. H. (2019). Carbon and nitrogen ‎stable isotope signatures linked to anthropogenic toxic substances pollution in a highly industrialized ‎area of South Korea. Marine pollution bulletin, 144, 152–159. DOI:10.1016/j.marpolbul.2019.05.006‎

‎[49] ‎ Sbia, R., Shahbaz, M., & Ozturk, I. (2017). Economic growth, financial development, urbanisation and ‎electricity consumption nexus in UAE. Economic research-ekonomska istrazivanja, 30(1), 527–549. ‎DOI:10.1080/1331677X.2017.1305792‎

‎[50] ‎ Ben Jebli, M., Ben Youssef, S., & Ozturk, I. (2015). The role of renewable energy consumption and ‎trade: Environmental Kuznets Curve analysis for Sub-Saharan Africa countries. African development ‎review, 27(3), 288–300. DOI:10.1111/1467-8268.12147‎

‎[51] ‎ Lin, B., Omoju, O. E., Nwakeze, N. M., Okonkwo, J. U., & Megbowon, E. T. (2016). Is the environmental ‎Kuznets curve hypothesis a sound basis for environmental policy in Africa? Journal of cleaner ‎production, 133, 712–724. DOI:10.1016/j.jclepro.2016.05.173‎

‎[52] ‎ Asongu, S. A., Le Roux, S., & Biekpe, N. (2018). Enhancing ICT for environmental sustainability in Sub-‎Saharan Africa. Technological forecasting and social change, 127, 209–216. DOI:10.1016/j.techfore.2017.09.022‎

‎[53] ‎ Rashid Khan, H. U., Nassani, A. A., Aldakhil, A. M., Qazi Abro, M. M., Islam, T., & Zaman, K. (2019). ‎Pro-poor growth and sustainable development framework: evidence from two step GMM estimator. ‎Journal of cleaner production, 206, 767–784. DOI:10.1016/j.jclepro.2018.09.195‎

‎[54] ‎ Muhammad, B. (2019). Energy consumption, CO2 emissions and economic growth in developed, ‎emerging and Middle East and North Africa countries. Energy, 179, 232–245. ‎DOI:10.1016/j.energy.2019.03.126‎

‎[55] ‎ Muhammad, B., & Khan, S. (2019). Effect of bilateral FDI, energy consumption, CO2 emission and ‎capital on economic growth of Asia countries. Energy reports, 5, 1305–1315. ‎DOI:10.1016/j.egyr.2019.09.004‎

‎[56] ‎ Muhammad, B., & Khan, S. (2021). Understanding the relationship between natural resources, ‎renewable energy consumption, economic factors, globalization and Co2 emissions in developed and ‎developing countries. In Natural resources forum (Vol. 45, No. 2, pp. 138-156). Oxford, UK: Blackwell ‎Publishing Ltd. DOI: 10.1111/1477-8947.12220‎

‎[57] ‎ Essandoh, O. K., Islam, M., & Kakinaka, M. (2020). Linking international trade and foreign direct ‎investment to CO2 emissions: any differences between developed and developing countries? Science of ‎the total environment, 712, 136437. DOI:10.1016/j.scitotenv.2019.136437‎

‎[58] ‎ Ncanywa, T., Mongale, I. P., Ralarala, O., Letsoalo, T. E., & Molele, B. S. (2021). Economic complexity to ‎boost the selected Sub-Saharan African economies. Journal of economic and financial sciences, 14(1), 8. ‎DOI:10.4102/jef.v14i1.567‎

‎[59] ‎ Omanbayev, B., Salahodjaev, R., & Lynn, R. (2018). Are greenhouse gas emissions and cognitive skills ‎related? Cross-country evidence. Environmental research, 160, 322–330. DOI:10.1016/j.envres.2017.10.004‎

‎[60] ‎ Salahodjaev, R. (2016). Does intelligence improve environmental sustainability? An empirical test. ‎Sustainable development, 24(1), 32–40. DOI:10.1002/sd.1604‎

‎[61] ‎ Salahodjaev, R., & Jarilkapova, D. (2019). Female parliamentarism and genuine savings: a cross-‎country test. Sustainable development, 27(4), 637–646. DOI:10.1002/sd.1928‎

Published

2024-11-28

How to Cite

Familusi, O. B. ., Omoyeni, O. D. ., Samchuks, O. M. ., & Adeniran, A. O. . (2024). Effect of Renewable Energy on Co2 Emission in Sub Saharan Africa. Systemic Analytics, 2(2), 304-314. https://doi.org/10.31181/sa22202431