A Comprehensive Review on Green Energy Technologies: An Approach for Environmental Sustainability and Eco-Friendliness
DOI:
https://doi.org/10.31181/sa22202427Keywords:
Green energy technologies, Environmental sustainability, Eco-Friendliness, Climate change, Greenhouse gas emissionsAbstract
The reliance on fossil fuels for energy production has led to environmental degradation and climate change. The burning of fossil fuels releases greenhouse gases into the atmosphere, contributing to global warming and air pollution. As a result, there is a pressing need for alternative energy sources that are sustainable and eco-friendly. Green energy technologies offer a promising solution to this problem by harnessing renewable resources such as sunlight, wind, and water to generate clean energy. However, the adoption of green energy technologies faces challenges such as high initial costs and limited infrastructure. This study aims to explore the potential of green energy technologies in addressing environmental sustainability and promoting eco-friendliness. This paper employed a literature review methodology to examine the current state of green energy technologies and their impact on the environment. The review includes studies, reports, and articles on various green energy technologies, such as solar power, wind energy, and hydropower. The literature review also explored the benefits of green energy technologies, including reduced greenhouse gas emissions, improved air quality, and energy security. Additionally, the review examines the challenges and barriers to the adoption of green energy technologies, such as policy constraints and technological limitations. The findings revealed that green energy technologies have a positive impact on the environment. Solar power, for example, is a clean and renewable energy source that can reduce greenhouse gas emissions and air pollution. Wind energy is another green energy technology that can help mitigate climate change and promote sustainable development. Hydropower, biomass, and geothermal energy are also viable options for generating clean energy. Despite the benefits of green energy technologies, challenges such as high costs and limited infrastructure remain barriers to their widespread adoption. Ultimately, investing in green energy technologies is essential for achieving environmental sustainability and ensuring a cleaner, healthier planet for future generations.
References
Shafik, W. (2024). Introduction to renewable energy technologies. In Soft computing in renewable energy technologies (pp. 1–31). CRC Press. https://www.taylorfrancis.com/chapters/edit/10.1201/9781003462460-1/introduction-renewable-energy-technologies-wasswa-shafik
Nwokediegwu, Z. Q. S., Ibekwe, K. I., Ilojianya, V. I., Etukudoh, E. A., & Ayorinde, O. B. (2024). Renewable energy technologies in engineering: a review of current developments and future prospects. Engineering science & technology journal, 5(2), 367–384. https://www.fepbl.com/index.php/estj/article/view/800
Batra, G. (2023). Renewable energy economics: achieving harmony between environmental protection and economic goals. Social science chronicle, 2(2), 1–32. https://socialsciencechronicle.com/wp-content/uploads/2023-009.pdf
Omer, A. M. (2008). Energy, environment and sustainable development. Renewable and sustainable energy reviews, 12(9), 2265–2300. https://www.sciencedirect.com/science/article/pii/S1364032107000834
Yoro, K. O., & Daramola, M. O. (2020). CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in carbon capture (pp. 3–28). Elsevier. https://www.sciencedirect.com/science/article/pii/B9780128196571000013
Hasan, M. M., Hossain, S., Mofijur, M., Kabir, Z., Badruddin, I. A., Yunus Khan, T. M., & Jassim, E. (2023). Harnessing solar power: a review of photovoltaic innovations, solar thermal systems, and the dawn of energy storage solutions. Energies, 16(18), 6456. https://www.mdpi.com/1996-1073/16/18/6456
Aygun, A., & Aksoy, Ay. (2023). The effect of reading books with the parents on the language development of preschool children. Gazi university research information system, 1, 1023–1041. https://avesis.gazi.edu.tr/yayin/07334352-456c-49d3-ae88-4a816fa19d57/ebeveyn-ile-birlikte-kitap-okuma-sureclerinin-okul-oncesidonem-cocuklarinin-dil-gelisimlerine-etkisi
Siwal, S. S., Zhang, Q., Devi, N., Saini, A. K., Saini, V., Pareek, B., … Thakur, V. K. (2021). Recovery processes of sustainable energy using different biomass and wastes. Renewable and sustainable energy reviews, 150, 111483. DOI:10.1016/j.rser.2021.111483
Ekanem, I. I., Usungurua, E. O., & Ikpe, A. E. (2024). Thermodynamic simulations of exergy efficiency in organic rankine cycle (ORC) based on exergy system. Annals of process engineering and management, 1(1), 1–26. https://www.apem.reapress.com/journal/article/view/18
Ukoba, K., Yoro, K. O., Eterigho-Ikelegbe, O., Ibegbulam, C., & Jen, T. C. (2024). Adaptation of solar power in the global south: prospects, challenges and opportunities. Heliyon. https://www.cell.com/heliyon/fulltext/S2405-8440(24)04040-4
Panagoda, L., Sandeepa, R., Perera, W., Sandunika, D. M. I., Siriwardhana, S., Alwis, M., & Dilka, S. H. S. (2023). Advancements in photovoltaic (Pv) technology for solar energy generation. Journal of research technology & engineering, 4(30), 30–72. https://www.jrte.org/wp-content/uploads/2023/07/Advancements-In-Photovoltaic-Pv-Technology-for-Solar-Energy-Generation.pdf
Hayat, M. B., Ali, D., Monyake, K. C., Alagha, L., & Ahmed, N. (2019). Solar energy—a look into power generation, challenges, and a solar‐powered future. International journal of energy research, 43(3), 1049–1067. https://onlinelibrary.wiley.com/doi/abs/10.1002/er.4252
Nazir, M. S., Mahdi, A. J., Bilal, M., Sohail, H. M., Ali, N., & Iqbal, H. M. N. (2019). Environmental impact and pollution-related challenges of renewable wind energy paradigm–a review. Science of the total environment, 683, 436–444. https://www.sciencedirect.com/science/article/pii/S0048969719323150
Emblemsvåg, J. (2022). Wind energy is not sustainable when balanced by fossil energy. Applied energy, 305, 117748. DOI:10.1016/j.apenergy.2021.117748
Ikpe, A. E., Ekanem, I., & Ekanem, K. R. (2024). Conventional trends on carbon capture and storage in the 21st century: a framework for environmental sustainability. Journal of environmental engineering and energy, 1(1), 1–15. https://www.jeee.reapress.com/journal/article/view/17
Psomopoulos, C. S. (2013). Solar energy: harvesting the sun’s energy for a sustainable future. Solar energy, 1(117), 2. https://www.researchgate.net/profile/Constantinos-Psomopoulos/publication/249992753_Solar_Energy_Harvesting_the_Sun’s_Energy_for_Sustainable_Future/links/5bc5c14ca6fdcc03c7890796/Solar-Energy-Harvesting-the-Suns-Energy-for-Sustainable-Future.pdf
Viadero, R. C., Rehbein, M. and Singh, A. (2016). Raising the grade for the upper mississippi river basin [presentation]. Raising the grade for the upper mississippi river basin. https://ian.umces.edu/blog/raising-the-grade-for-the-upper-mississippi-river-basin/
Tazvinga, H., Thopil, M., Numbi, P. B., & Adefarati, T. (2017). Distributed renewable energy technologies. Handbook of distributed generation: electric power technologies, economics and environmental impacts, 3–67. https://link.springer.com/chapter/10.1007/978-3-319-51343-0_1
Nadeem, T. Bin, Siddiqui, M., Khalid, M., & Asif, M. (2023). Distributed energy systems: a review of classification, technologies, applications, and policies. Energy strategy reviews, 48, 101096. DOI:10.1016/j.esr.2023.101096
Contreras Montoya, L. T., Lain, S., Issa, M., & Ilinca, A. (2021). 4 - Renewable energy systems. In Hybrid renewable energy systems and microgrids (pp. 103–177). Academic Press. DOI: 10.1016/B978-0-12-821724-5.00013-1
Kumar, V., Shrivastava, R. L., & Untawale, S. P. (2015). Solar energy: review of potential green & clean energy for coastal and offshore applications. Aquatic procedia, 4, 473–480. DOI:10.1016/j.aqpro.2015.02.062
Jaiswal, K. K., Chowdhury, C. R., Yadav, D., Verma, R., Dutta, S., Jaiswal, K. S., … Karuppasamy, K. S. K. (2022). Renewable and sustainable clean energy development and impact on social, economic, and environmental health. Energy nexus, 7, 100118. DOI:10.1016/j.nexus.2022.100118
Ahmed, N. A., & Cameron, M. (2014). The challenges and possible solutions of horizontal axis wind turbines as a clean energy solution for the future. Renewable and sustainable energy reviews, 38, 439–460. DOI:10.1016/j.rser.2014.06.004
Etuk, E. M., Ikpe, A. E., & Adoh, U. A. (2020). Design and analysis of displacement models for modular horizontal wind turbine blade structure. Nigerian journal of technology, 39(1), 121–130. DOI:10.4314/njt.v39i1.13
Nazir, M. S., Wang, Y., Bilal, M., & Abdalla, A. N. (2022). Wind energy, its application, challenges, and potential environmental impact. In Handbook of climate change mitigation and adaptation (pp. 899–935). Springer. https://link.springer.com/content/pdf/10.1007/978-3-030-72579-2_108.pdf
Yang, P. (2024). Hydropower. In Renewable energy: challenges and solutions (pp. 109–138). Springer. https://link.springer.com/chapter/10.1007/978-3-031-49125-2_4
Garrett, K. P., McManamay, R. A., & Witt, A. (2023). Harnessing the power of environmental flows: Sustaining river ecosystem integrity while increasing energy potential at hydropower dams. Renewable and sustainable energy reviews, 173, 113049. DOI:10.1016/j.rser.2022.113049
Ugwu, C. O., Ozor, P. A., & Mbohwa, C. (2022). Small hydropower as a source of clean and local energy in Nigeria: prospects and challenges. Fuel communications, 10, 100046. https://www.sciencedirect.com/science/article/pii/S266605202100039X
Igwe, C. I. (2021). Geothermal energy: a review. International journal of engineering research & technology (IJERT), 10(3), 655–661. https://www.academia.edu/download/68227461/geothermal_energy_a_review_IJERTV10IS030164.pdf
Shortall, R., Davidsdottir, B., & Axelsson, G. (2015). Geothermal energy for sustainable development: a review of sustainability impacts and assessment frameworks. Renewable and sustainable energy reviews, 44, 391–406. https://www.sciencedirect.com/science/article/pii/S1364032114010727
Bronicki, L. Y. (2012). Foreword to the third edition. In Geothermal power plants. Boston: Butterworth-Heinemann. DOI: 10.1016/B978-0-08-098206-9.00027-0
Liu, F., Tait, S., Schellart, A., Mayfield, M., & Boxall, J. (2020). Reducing carbon emissions by integrating urban water systems and renewable energy sources at a community scale. Renewable and sustainable energy reviews, 123, 109767. DOI:10.1016/j.rser.2020.109767
Erickson, L. E. (2017). Reducing greenhouse gas emissions and improving air quality: two global challenges. Environmental progress & sustainable energy, 36(4), 982–988. https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/ep.12665
Elliott, D. (2015). Green jobs and the ethics of energy. In Ethical engineering for international development and environmental sustainability (pp. 141–164). Springer. https://link.springer.com/chapter/10.1007/978-1-4471-6618-4_5
Strielkowski, W., Civín, L., Tarkhanova, E., Tvaronavičienė, M., & Petrenko, Y. (2021). Renewable energy in the sustainable development of electrical power sector: a review. Energies, 14(24), 8240. https://www.mdpi.com/1996-1073/14/24/8240
Zhang, L. P., & Zhou, P. (2024). Reassessing energy security risk incorporating external shock: a variance-based composite indicator approach. Applied energy, 358, 122665. DOI:10.1016/j.apenergy.2024.122665
Dincer, I., & Acar, C. (2017). Smart energy systems for a sustainable future. Applied energy, 194, 225–235. https://www.sciencedirect.com/science/article/pii/S0306261916318220
Hafezi, R., & Alipour, M. (2021). Renewable energy sources: traditional and modern-age technologies. In Affordable and clean energy (pp. 1085–1099). Springer. https://link.springer.com/content/pdf/10.1007/978-3-319-95864-4_18.pdf
Omer, A. M. (2009). Energy use and environmental impacts: a general review. Journal of renewable and sustainable energy, 1(5). https://pubs.aip.org/aip/jrse/article-abstract/1/5/053101/284457
Panwar, N. L., Kaushik, S. C., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: a review. Renewable and sustainable energy reviews, 15(3), 1513–1524. DOI:10.1016/j.rser.2010.11.037
Wang, J., & Azam, W. (2024). Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries. Geoscience frontiers, 15(2), 101757. DOI:10.1016/j.gsf.2023.101757
Huo, J., & Peng, C. (2023). Depletion of natural resources and environmental quality: Prospects of energy use, energy imports, and economic growth hindrances. Resources policy, 86, 104049. DOI:10.1016/j.resourpol.2023.104049
Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy strategy reviews, 24, 38–50. DOI:10.1016/j.esr.2019.01.006
Ellabban, O., Abu-Rub, H., & Blaabjerg, F. (2014). Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and sustainable energy reviews, 39, 748–764. DOI:10.1016/j.rser.2014.07.113
Sen, S., & Ganguly, S. (2017). Opportunities, barriers and issues with renewable energy development – a discussion. Renewable and sustainable energy reviews, 69, 1170–1181. DOI:10.1016/j.rser.2016.09.137
Bogdanov, D., Ram, M., Aghahosseini, A., Gulagi, A., Oyewo, A. S., Child, M., … Breyer, C. (2021). Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy, 227, 120467. DOI:10.1016/j.energy.2021.120467
Hoppe, T., Graf, A., Warbroek, B., Lammers, I., & Lepping, I. (2015). Local governments supporting local energy initiatives: lessons from the best practices of saerbeck (Germany) and lochem (the Netherlands). Sustainability, 7(2), 1900–1931. https://www.mdpi.com/2071-1050/7/2/1900
Kata, R., Cyran, K., Dybka, S., Lechwar, M., & Pitera, R. (2022). The role of local government in implementing renewable energy sources in households (podkarpacie case study). Energies, 15(9), 3163. https://www.mdpi.com/1996-1073/15/9/3163
Byrne, J., Hughes, K., Rickerson, W., & Kurdgelashvili, L. (2007). American policy conflict in the greenhouse: divergent trends in federal, regional, state, and local green energy and climate change policy. Energy policy, 35(9), 4555–4573. DOI:10.1016/j.enpol.2007.02.028
Dobravec, V., Matak, N., Sakulin, C., & Krajačić, G. (2021). Multilevel governance energy planning and policy: a view on local energy initiatives. Energy, sustainability and society, 11, 1–17. https://link.springer.com/article/10.1186/s13705-020-00277-y
Hickmann, T., Widerberg, O., Lederer, M., & Pattberg, P. (2021). The united nations framework convention on climate change secretariat as an orchestrator in global climate policymaking. International review of administrative sciences, 87(1), 21–38. https://journals.sagepub.com/doi/abs/10.1177/0020852319840425
Ashe, J. W., Van Lierop, R., & Cherian, A. (1999). The role of the alliance of small island states (AOSIS) in the negotiation of the united nations framework convention on climate change (UNFCCC). Natural resources forum (Vol. 23, pp. 209–220). Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1477-8947.1999.tb00910.x
Upton, G. B., & Snyder, B. F. (2017). Funding renewable energy: an analysis of renewable portfolio standards. Energy economics, 66, 205–216. DOI:10.1016/j.eneco.2017.06.003
Heeter, J. S., Speer, B. K., & Glick, M. B. (2019). International best practices for implementing and designing renewable portfolio standard (RPS) policies. National Renewable Energy Lab.(NREL), Golden, CO (United States). https://www.osti.gov/biblio/1507986
Jenner, S., Groba, F., & Indvik, J. (2013). Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries. Energy policy, 52, 385–401. DOI: 10.1016/j.enpol.2012.09.046
Donmez, N. F. K. (2023). Taxation and incentives in renewable energy investments. Elektronik sosyal bilimler dergisi, 22(85), 220–245. https://dergipark.org.tr/en/doi/10.17755/esosder.1208131
Sunar, N., & Swaminathan, J. M. (2021). Net-metered distributed renewable energy: a peril for utilities? Management science, 67(11), 6716–6733. https://pubsonline.informs.org/doi/abs/10.1287/mnsc.2020.3854
Revesz, R. L., & Unel, B. (2017). Managing the future of the electricity grid. Harvard environmental law review, 41, 43. https://heinonline.org/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/helr41§ion=5
Poullikkas, A., Kourtis, G., & Hadjipaschalis, I. (2013). A review of net metering mechanism for electricity renewable energy sources. International journal of energy and environment (PRINT), 4. https://www.osti.gov/etdeweb/biblio/22188315
Emeka-Okoli, S., Otonnah, C. A., Nwankwo, T. C., & Nwankwo, E. E. (2024). Review of carbon pricing mechanisms: effectiveness and policy implications. International journal of applied research in social sciences, 6(3), 337–347. https://fepbl.com/index.php/ijarss/article/view/891
Kittner, N., Lill, F., & Kammen, D. M. (2017). Energy storage deployment and innovation for the clean energy transition. Nature energy, 2(9), 1–6. https://www.nature.com/articles/nenergy2017125
Lawal, O. A., Jimoh, A. A., Abdullah, K. A., Bello, B. A., & Awoyemi, E. D. (2024). Economic and environmental impact of energy audit and efficiency: a report from a Nigeria household. Energy for sustainable development, 79, 101387. DOI:10.1016/j.esd.2024.101387
Schulze, M., Nehler, H., Ottosson, M., & Thollander, P. (2016). Energy management in industry – a systematic review of previous findings and an integrative conceptual framework. Journal of cleaner production, 112, 3692–3708. DOI:10.1016/j.jclepro.2015.06.060
Rahman, A., Farrok, O., & Haque, M. M. (2022). Environmental impact of renewable energy source based electrical power plants: solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renewable and sustainable energy reviews, 161, 112279. DOI:10.1016/j.rser.2022.112279
Hoang, A. T., Pham, V. V., & Nguyen, X. P. (2021). Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process. Journal of cleaner production, 305, 127161. DOI:10.1016/j.jclepro.2021.127161
Bayindir, R., Colak, I., Fulli, G., & Demirtas, K. (2016). Smart grid technologies and applications. Renewable and sustainable energy reviews, 66, 499–516. DOI:10.1016/j.rser.2016.08.002
Ezeigweneme, C. A., Nwasike, C. N., Adefemi, A., Adegbite, A. O., & Gidiagba, J. O. (2024). Smart grids in industrial paradigms: a review of progress, benefits, and maintenance implications: analyzing the role of smart grids in predictive maintenance and the integration of renewable energy sources, along with their overall impact on the industri. Engineering science & technology journal, 5(1), 1–20. https://fepbl.com/index.php/estj/article/view/719
Ahmed, Z., Ahmad, M., Murshed, M., Ibrahim Shah, M., Mahmood, H., & Abbas, S. (2022). How do green energy technology investments, technological innovation, and trade globalization enhance green energy supply and stimulate environmental sustainability in the G7 countries? Gondwana research, 112, 105–115. DOI:10.1016/j.gr.2022.09.014
Sharif, A., Kartal, M. T., Bekun, F. V., Pata, U. K., Foon, C. L., & Kılıç Depren, S. (2023). Role of green technology, environmental taxes, and green energy towards sustainable environment: insights from sovereign Nordic countries by CS-ARDL approach. Gondwana research, 117, 194–206. DOI:10.1016/j.gr.2023.01.009
Anwar, A., Siddique, M., Eyup Dogan, & Sharif, A. (2021). The moderating role of renewable and non-renewable energy in environment-income nexus for ASEAN countries: evidence from method of moments quantile regression. Renewable energy, 164, 956–967. DOI:10.1016/j.renene.2020.09.128
Tariq, G., Sun, H., Ali, I., Pasha, A. A., Khan, M. S., Rahman, M. M., … Shah, Q. (2022). Influence of green technology, green energy consumption, energy efficiency, trade, economic development and FDI on climate change in South Asia. Scientific reports, 12(1), 16376. https://www.nature.com/articles/s41598-022-20432-z
Garrett-Peltier, H. (2017). Green versus brown: comparing the employment impacts of energy efficiency, renewable energy, and fossil fuels using an input-output model. Economic modelling, 61, 439–447. DOI:10.1016/j.econmod.2016.11.012
Sayed, E. T., Wilberforce, T., Elsaid, K., Rabaia, M. K. H., Abdelkareem, M. A., Chae, K.-J., & Olabi, A. G. (2021). A critical review on environmental impacts of renewable energy systems and mitigation strategies: Wind, hydro, biomass and geothermal. Science of the total environment, 766, 144505. DOI:10.1016/j.scitotenv.2020.144505
Kebede, A. A., Kalogiannis, T., Van Mierlo, J., & Berecibar, M. (2022). A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renewable and sustainable energy reviews, 159, 112213. DOI:10.1016/j.rser.2022.112213
Islam, M. R., Mahfuz-Ur-Rahman, A. M., Muttaqi, K. M., & Sutanto, D. (2018). State-of-the-art of the medium-voltage power converter technologies for grid integration of solar photovoltaic power plants. IEEE transactions on energy conversion, 34(1), 372–384. https://ieeexplore.ieee.org/abstract/document/8516356/
Ageed, Z. S., Zeebaree, S. R., Sadeeq, M. A., Abdulrazzaq, M. B., Salim, B. W., Salih, A. A., … Ahmed, A. M. (2021). A state of art survey for intelligent energy monitoring systems. Asian journal of research in computer science, 8(1), 46–61. https://www.academia.edu/download/96640245/56660.pdf
Benedek, J., Sebestyén, T. T., & Bartók, B. (2018). Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development. Renewable and sustainable energy reviews, 90, 516–535. DOI:10.1016/j.rser.2018.03.020
Algarni, S., Tirth, V., Alqahtani, T., Alshehery, S., & Kshirsagar, P. (2023). Contribution of renewable energy sources to the environmental impacts and economic benefits for sustainable development. Sustainable energy technologies and assessments, 56, 103098. DOI:10.1016/j.seta.2023.103098
Vijayan, D. S., Koda, E., Sivasuriyan, A., Winkler, J., Devarajan, P., Kumar, R. S., … Vaverková, M. D. (2023). Advancements in solar panel technology in civil engineering for revolutionizing renewable energy solutions—a review. Energies, 16(18), 6579. https://www.mdpi.com/1996-1073/16/18/6579
Hassan, H. A. H., Pelov, A., & Nuaymi, L. (2015). Integrating cellular networks, smart grid, and renewable energy: Analysis, architecture, and challenges. IEEE access, 3, 2755–2770. https://ieeexplore.ieee.org/abstract/document/7353091/
Zhao, Q., Basem, A., Shami, H. O., Mausam, K., Alsehli, M., Hameed, A. I., … El-Shafay, A. S. (2024). Conceptual design and optimization of integrating renewable energy sources with hydrogen energy storage capabilities. International journal of hydrogen energy, 79, 1313–1330. DOI:10.1016/j.ijhydene.2024.07.071
Scherman, W. S., & Fleischer, J. J. (2015). The environmental protection agency and the clean power plan: A paradigm shift in energy regulation away from energy regulators. Energy lj, 36, 355. https://heinonline.org/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/energy36§ion=27
Dixon, R. K., McGowan, E., Onysko, G., & Scheer, R. M. (2010). US energy conservation and efficiency policies: challenges and opportunities. Energy policy, 38(11), 6398–6408. DOI:10.1016/j.enpol.2010.01.038
Asmelash, E., Prakash, G., Gorini, R., & Gielen, D. (2020). Role of IRENA for global transition to 100% renewable energy. In Accelerating the transition to a 100%renewable energy ERA (pp. 51–71). Cham: Springer International Publishing. DOI: 10.1007/978-3-030-40738-4_2
Babie, P., & Wawryk, A. (2021). Climate change, the rule of law, and market-based schemes to encourage renewable energy and energy efficiency. Michigan state international law review, 29, 363. https://heinonline.org/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/mistjintl29§ion=18
Young, A., & Roederer-Rynning, C. (2020). The EU policy process in comparative perspective. Policy-making in the european union, 43. https://books.google.com/books?hl=en&lr=&id=FooIEAAAQBAJ&oi=fnd&pg=PA43&dq=Wallace,+H.,+Pollack,+M.+A.,+Roederer-Rynning,+C.,+%26+Young,+A.+R.+(Eds.).+(2020).+Policy-making+in+the+European+Union.+Oxford+University+Press,+USA&ots=aYlSVc50lI&sig=uZm1F31EsJGexohppuanVveDhto
Hassan, Q., Algburi, S., Sameen, A. Z., Salman, H. M., & Jaszczur, M. (2023). A review of hybrid renewable energy systems: Solar and wind-powered solutions: challenges, opportunities, and policy implications. Results in engineering, 20, 101621. DOI:10.1016/j.rineng.2023.101621
Notton, G., Nivet, M.-L., Voyant, C., Paoli, C., Darras, C., Motte, F., & Fouilloy, A. (2018). Intermittent and stochastic character of renewable energy sources: consequences, cost of intermittence and benefit of forecasting. Renewable and sustainable energy reviews, 87, 96–105. DOI:10.1016/j.rser.2018.02.007
Sovacool, B. K. (2009). The intermittency of wind, solar, and renewable electricity generators: Technical barrier or rhetorical excuse? Utilities policy, 17(3), 288–296. DOI:10.1016/j.jup.2008.07.001
Alotaibi, I., Abido, M. A., Khalid, M., & Savkin, A. V. (2020). A comprehensive review of recent advances in smart grids: a sustainable future with renewable energy resources. Energies, 13(23), 6269. https://www.mdpi.com/1996-1073/13/23/6269
Wolsink, M. (2012). Wind power: Basic challenge concerning social acceptance. Encyclopedia of sustainability science and technology, 17, 12218–12254. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e8fd8e8f7e59c1f2095a2fd98dc107c66deab261
Moran, E. F., Lopez, M. C., Moore, N., Müller, N., & Hyndman, D. W. (2018). Sustainable hydropower in the 21st century. Proceedings of the national academy of sciences, 115(47), 11891–11898. https://www.pnas.org/doi/abs/10.1073/pnas.1809426115
El Bassam, N. (2021). Energy storage, smart grids, and electric vehicles. In Distributed renewable energies for off-grid communities (pp. 263–295). Elsevier. https://www.sciencedirect.com/science/article/pii/B9780128216057000088
Avesh, M., Hossain, I., & Sharma, R. C. (2024). Revolutionizing transportation: the future impact of green energy. In Dynamics of transportation ecosystem, modeling, and control (pp. 261–293). Springer. https://link.springer.com/chapter/10.1007/978-981-97-0437-8_12
Sarbu, I., & Sebarchievici, C. (2014). General review of ground-source heat pump systems for heating and cooling of buildings. Energy and buildings, 70, 441–454. DOI:10.1016/j.enbuild.2013.11.068
Soltani, M., M. Kashkooli, F., Dehghani-Sanij, A. R., Kazemi, A. R., Bordbar, N., Farshchi, M. J., … B. Dusseault, M. (2019). A comprehensive study of geothermal heating and cooling systems. Sustainable cities and society, 44, 793–818. DOI:10.1016/j.scs.2018.09.036