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1 | Introduction  

Empirical assessments affirm that Linear Programming (LP) occupies a paramount position within the 

expansive domain of operations research. It's a striking revelation that many real-world predicaments can be 

seamlessly transmuted into LP models, thereby establishing this framework as an ineluctable cornerstone in 

contemporary applications spanning diverse domains, including energy management, military strategy, 

transportation logistics, and precision manufacturing optimization.  

The seminal Dantzig's Simplex method, incubated within the crucible of the American Air Force during the 

tumultuous era of the Second World War [1], stands firmly at the forefront of productive solution techniques 
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for navigating the labyrinthine intricacies of LP Problems (LPPs). The Simplex algorithm has solidified its 

standing as a preeminent stalwart in the pantheon of LP methodologies, meriting even the distinguished 

recognition of being included in the revered list of top ten algorithms of the twentieth century by the esteemed 

journal computing in science and engineering [2]. 

Notwithstanding its laurels, the path through the computational terrain of LP, guided by the Simplex 

algorithm, remains rife with inherent complexities. In the customary modus operandi of the Simplex 

algorithm, the odyssey invariably commences from a foundational vantage point known as the Basic Feasible 

Solution (BFS). However, this journey is underpinned by a stringent prerequisite: the positivity of the solution 

column or Right Hand Side (RHS) of the constraints. In stark contrast, when confronted with constraints 

adorned with the mantle of either a ≥ or an = sign, we find ourselves entangled in an intricate problem. Here, 

the initiation of the quest for the elusive BFS proves to be a daunting enigma, rendering the labyrinthine 

landscape of the simplex method even more perplexing. This presents a problem, as the labyrinthine maze of 

the simplex method conceals the path to an initial BFS when such constraints hold sway. In response to this 

enigma, a potent conceptual entity emerges from the shadows: the artificial variable. This conceptual sentinel 

takes center stage within the given LPP context, orchestrating a transformation that beckons the deployment 

of specialized techniques such as the Two-Phase or Big-M method [1]. 

 

While these techniques exhibit considerable intrigue and extensive applicability, they are burdened by 

substantial computational expenses. Researchers are directing heightened scrutiny toward minimizing 

computational time and costs as these methods find their way into real-world scenarios. Consequently, earnest 

endeavors have been undertaken to eschew the necessity of artificial variables within the realm of the simplex 

method. 

Arsham [3] and Arsham et al. [4] introduced an algorithm devoid of artificial variables called Push-and-Pull. 

Junior and Lins [5] proposed a technique that enhances iteration efficiency by approximately 33% by 

furnishing the Simplex method with a more proficient initial basis. By employing the cosine criterion, Corley 

et al. [6] devised an algorithm that surpasses the standard simplex method in terms of efficiency. Nabli [7] 

introduced a novel initializing simplex method termed the Non-Feasible Basis (NFB) method. Stojković et 

al. [8] conducted a comparative analysis of three distinct methods for identifying a BFS through numerical 

test examples. Their findings showcased that two of these methods outperform the classical algorithm for 

deriving initial solutions, particularly on the Netlib test problems. Boonperm and Sinapiromsaran [9] unveiled 

a technique for non-acute constraint relaxation. This innovation not only obviates the need for artificial 

variables but also reduces the startup time required to resolve the initial relaxation problem. Their research 

demonstrated the superiority of the new algorithm over the original Simplex method, replete with artificial 

variables, mainly when applied to LPPs characterized by a substantial number of acute constraints. Saito et 

al. [10] expounded upon an active-set, cutting-plane approach named Constraint Optimal Selection 

Techniques (COSTs). They developed a new COST tailored to solve nonnegative LPPs. 

Additionally, they introduced a geometric interpretation of this innovative selection rule and conducted 

computational comparisons, pitting the new COST against existing LP algorithms on sizeable sample 

problems. Gao [11] proposed enhancing Arsham's algorithm [3] and optimizing its performance. This 

enhancement entails a systematic search for non-basic variables within the Basic Variable Set (BVS), column 

by column, in a single pivot sequence from commencement to conclusion. This approach markedly reduces 

the computational time typically consumed by numerous repeated search sequences after each iteration. For 

further exploration, refer to [12–22]. Notably, the structural underpinnings of most of these methods are 

rooted in negative variables. When the count of artificial variables assumes significance, these methods offer 

an advantageous edge in terms of computational efficiency compared to the Two-phase and Big-M methods.  

In LP, a paradigm shift occurs with the development of an algorithm that eliminates the need for artificial 

variables. This algorithm represents a significant advancement in the field as it simplifies the optimization 

process and enhances decision-making capabilities. Within the confines of this document, we introduce an 
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innovative method designed to tackle  LP challenges without the reliance on artificial variables. What 

distinguishes our approach is its foundational structure, which seamlessly incorporates both negative and 

positive variables, offering an elegantly straightforward implementation process. To highlight the 

effectiveness of our method, we present a numerical example, unraveling the results obtained through 

comprehensive discussion and analysis. 

2 | Prerequisite 

We discuss fundamental notation and initial findings that we will revisit later. For a more comprehensive 

examination, please consult [1]. 

The conventional formulation of LP, encompassing m constraints and n variables, can be articulated as 

follows: 

Where rank(A,b) rank(A) m= =  and A  is an m n  matrix. After carrying out permutations on the column 

of A , let A (B, N)=  , where B  is an m m  invertible matrix and is called basic matrix and N is an m n m −  

matrix which is called non-basic matrix. Similarly, the solution x  to the equation A =x b can be arranged with 

respect to B, N , i.e. B

N

 
=  
 

x
x

x
, where 

Then 

is called a Basic Solution (BS) of LP. This BS is said to be the BFS of the given problem when the condition 

B x 0  met. The variables associated with BS are said to be basic variables, while others 
Nx  are said to be 

non-basic variables. We express the basic variable from Eqs. (1) and (2) as:  

Here, R  indicates the "current set of indices" of the non-basic variables and 1B−=b b   , 1

j jB−=y a . 
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where Bz = c b  , 
j B jz = c y . By the above demonstrations, we get the following LP: 

 

3 | Simplex Algorithm Extension 

Here, we present our Simplex Algorithm Extension (SAE) method. SAE is a groundbreaking approach 

designed to tackle LPPs without the need for artificial variables. Based on negative and positive variables, this 

innovative technique simplifies LP problem-solving while maintaining computational efficiency. Consider the 

problem: 

In which constraints can be written in the equality form by using slack variables as: 

From this model, it is seen that we cannot pick the starting basic for a BFS.  

To do so, we present a new algorithm as follows. 

Algorithm 1  (SAE). 

While 
ii s.t. b 0  do; 

I. Choose a BS (for example Bx = −b ). 

II. Set r iMin( ).=b b  

III. If rjfor all  j;  y 0  , stop; the considered LP is infeasible.  

      Otherwise, select kx  as entering variable  by the following test: 

B
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IV. The index t  of the blocking variable 
tBx  which leaves the basis is determined by following: 

V. Update the basis B  where 
ka (kth column of A  ) replaces 

ta (tth column of A  ), update the  index set R

.       

 End while 

The current basis is feasible. 

Use the simplex algorithm. 

4 | Analysis of SAE 

In this section, we discuss all cases of SAE. 

Case A: For 
ib 0 , if ijfor all  j;  y 0  , then LP has no feasible solution, because if there is an x 0 , then we 

have 

Since ij ijfor all j;  a y 0=  and j x 0  , therefore, the left-hand side of the above equation is  0 . But the right-

hand side is negative. This contradiction shows that there could be no feasible solution to the LP. 

We discuss all cases of our algorithm. 

Case B: 
ib 0.  

Under this case, we have the following subcases:  

Subcase  B1: If k subject that: iky 0,  

Since 

The component of 
iBx  remains negative, and we need more repetition. 

Subcase  B2: If k  subject that iky 0  and the blocking variable be 1λ γ= .    

 In this case, the new value of 
iBx  will be improved. Because 

r r
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Subcase  B3: 
iky 0  and the blocking variable is

2λ γ .=     

  In this case, the new value of 
iBx is nonnegative. Since

2λ γ= we have 

And since 
iky 0 , we get 

Case C: 
ib 0.  

This case is further divided into four subcases. 

Subcase  C1: 
iky 0     

In this case, 
iBx  is nonnegative. 

Subcase  C2: 
iky 0  and the blocking variable is

1λ γ .=     

Since
1λ γ= we have 

And since 
iky 0 , we get 

Subcase  C3: 
iky 0  and the blocking variable is

1λ γ .=     

In this case 

In general speaking, by the above demonstration, we can see that our method will lead the BS to the BFS.  

5 | An Illustrative Example 

Consider the following LP: 

By the SAE, we get 
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r 1 2= = −b b  and 
k 1x x=  is the entering variable. Furthermore 
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2γ 2= , λ 1.=  Therefore 

6x  is the 

blocking variable, and we have 

 

 

 

 

  

 

r 1 1= = −b b  and 
k 3x x=  is the entering variable. Furthermore 

1γ {}= ,
2γ 0.5= , λ 0.5.=  Therefore 

5x  is the 

blocking variable, and we have 

  

 

 

 

 

  

Since j jz c 0−  for all non-basic variables, and ifor all  i; 0b , the optimal point *x (2.5,0,0.5,0)=                             

with opjective *z 9.5= is reached. Here, we solve this example with Nabli's algorithm [7]. By using Nabli's 

Algorithm, we get 

  

 

 

 

 

 

r 1 2= = −b b  and k 2x x=  is the entering variable. Furthermore λ 2.=  Therefore 5x  is the blocking variable 

and we have  

 

 

z  
1x 2x 3x 4x 5x 6x 7x                              RHS  

  -3      -2      -4      6      0      0       0    0 

5x  

 

6x  

 

7x  

  -1      -1       1      1      1      0       0  
   
   1        2      -3      6     0      1       0   
  
  -2        1       2     -1     0      0       1 

  -2 
    
   1 
 
  -1 

z  
1x 2x 3x 4x 5x 6x 7x                              RHS  

   0       4      -13   24     0      3       0    3 

5x  

 

1x  

 

7x  

   0       1        -2     7     1      1       0  
   
   1        2      -3      6     0      1       0   
  
   0        5      -4     11    0      2       1 

  -1 
    
   1 
 
   1 

z  
1x 2x 3x 4x 5x 6x 7x                                 RHS  

   0     -2.5     0   -21.5   -7.5   -3.5     0          9.5 

3x  

 

1x  

 

7x  

   0     -0.5     1     -3.5   -0.5   -0.5     0  
   
   1      0.5     0     -2.5    -1.5   -0.5    0   
  
   0      3        0     -3       -2       0       1 

  0.5 
    
  2.5 
 
   3 

z  
1x 2x 3x 4x 5x 6x 7x                              RHS  

  -3      -2      -4      6      0      0       0    0 

5x  

 

6x  

 

7x  

  -1      -1       1      1      1      0       0  
   
   1        2      -3      6     0      1       0   
  
  -2        1       2     -1     0      0       1 

  -2 
    
   1 
 
  -1 



 A paradigm shift in linear programming: an algorithm without artificial variables 

8 

  

 

 

 

 

 

r 2 3= = −b b and 
k 1x x=  is the entering variable. Furthermore λ 3.=  Therefore 

6x  is the blocking variable 

and we have  

 

  

 

 

 

 

r 1 1= = −b b and 
k 3x x=  is the entering variable. Furthermore λ 0.5.=  Therefore 

2x  is the blocking variable 

and we have   

  

 

 

 

 

  

Therefore, the optimal point *x (2.5,0,0.5,0)=   with the objective *z 9.5=  is reached with three iterations. 

The classic methods, such as the Two-Phase and Big-M methods, have more computational requirements, 

see [7]. Therefore, the efficiency of SAE is better than the mentioned methods. 

6 | Conclusions 

This paper has set out with the primary objective of introducing a novel method for tackling the LPP. The 

pivotal innovation of this Algorithm lies in its deliberate omission of artificial variables, thereby significantly 

curtailing the computation time required to ascertain the optimal solution. Unlike the conventional approach, 

which invariably necessitates the introduction of artificial variables when faced with constraints bearing a 

greater than or equal sign, our method eradicates this prerequisite. We have introduced this novel algorithm 

and conducted a comprehensive analysis of its convergence properties. The practical applicability of our 

approach has been substantiated through a numerical example, revealing that our Algorithm outperforms 

classical methods, emerging as a more effective and expeditious solution to LP challenges. 
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