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Abstract

From a differential geometric perspective, Information Geometry (IG) aims to characterise the structure of statistical geodesic
models. The research done for this paper offers a novel method for modelling the IG of a queuing system. From the perspective
of IG, the manifold of the temporary M/M/% queue is desctibed in this context. The Fisher Information Mattix (FIM) as well as
the Inverse of FIM, (IFIM) of transient M/M/% Queue Manifold (QM) are devised. In addition to that, new results that uncovered
the significant impact of stability of M/M/%® QM on the existence of IFIM are obtained. Moreover, the Geodesic Equations
(GEs) of motion of the coordinates of the undetlying transient M/M /0 are obtained. Also, it is revealed that stable M/M /% QM
is developable (i.e., has a zero Gaussian curvature) and has a non-zero Ricci Curvature Tensor (RCT). The Information Matrix
Exponential IME) is devised. Also, it is shown that stability of the devised IME enforces the instability of M/M/o QM. More
interestingly, novel relativistic info-geometric queueing theoretic links are revealed. A summary combined with future research

work are given.

Keywords: Transient M/M/ % queueuing system, Information geometry, Statistical manifold, Queue manifold, Geodesic
equations of motion, Ricci curvature, Einstein tensor, Stress energy tensor, Riemannian metric, Fisher information matrix,
Inverse fisher information matrix, Threshold theorem.

1| Introduction

Numerous study ateas, including statistical inference, stochastic control, and neural networks, have
extensively used Information Geometry (IG) [1]. In other words, the goal of 1G is to use statistics to apply
the methods of Differential Geometry (DG).
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Fig. 1. The parameter inference 0 for an infinite-dimensional manifold [2].

A manifold [2] is a topological finite dimensional Cartesian space, R", where one has an infinite-dimensional
manifold. In Fig 7, the parameter inference 8 of a model from data can be interpreted as a decision-making

problem [3].In [1], [4], the exponential distribution families were investigated with many variations.

In this research, the geometric structure of the stable M/G/1 Queue Manifold (QM) is studied. The IG of a
stable M/D/1 queue has only been the subject of one research study [3], in which a geometric structure was
introduced on the set of M/D/1 queues by utilising the features of queue length routes. This perspective
drove the original research path in this study, which links information matrix theories and IG to provide a

fresh understanding of the transient M/M/% queue.

In this work, scalar curvature [3] quantifies the deviation for a geodesic ball's volume from that of a Euclidean
ball with the same radius, while Ricci Curvature (RC) [3] assesses the deviation of the Riemannian Metric
(RM) from the standard Euclidean Metric (EM).
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Fig. 2. Geometric representation of geodesics on curved surfaces [3].

2| Main Definitions

2.1| Main Definition on IG
Definition 1 (Statistical Manifold (SM)). We call M = {p(x;0)| 8 = (6,67, ...,0™)eR"} a manifold [1] of
n-dimensional distribution with coordinate system (6,07, ...,0").

Definition 2 (potential function). The potential function, ¥(8) [1] is the distinguished negative function of
the coordinates alone of (L(x;0) = In(p(x; 0))). Fundamentally, ¥(8) is the part of (—L(x; 8)) which only

contains (61,07, ...,0M).

Definition 3. Fisher Information Matrix (FIM), or [g;]) [1] reads:
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8] = [%;ei (‘P(e))],i,j €[1,2,3,...,n}. [§))
Definition 4. Inverse of FIM, (IFIM), or [gl]) reads as [5]

(6] = (D)™ = 28 A= getfg ). @)
The corresponding arc length function is

(@7 = )7y (@00 )
Definition 5 (a-connection). For each aeR, the a (or V(®)-connection [5] reads:

LY = (59)(0; 8; 0 (P(6))). )

iy _ 2
¥(0) (Definition), 9; = TR

Definition 6.

I. The Geodesic Equations (GEs) of manifold M with coordinate system 8 = (84,0,,..,0,) are defined by

Mageed [1].
d2ek k(o) (dOh d&l, .. k(o) _ p(a) sk
IO (S GO = 0ij = 12,0 = [Vgk. )

II. The GEs [1] that characterize the curves that minimize the length/energy between two arbitrary points on a
smooth manifold M.
III. The total energy [6] of a path 6 = 6(t), betweent = aandt = b, can be defined in terms of a Lagrangian
function L = L (6, de), as follows:

t2
E(0) = fL(G(t), 0-(t)) dt. (6)
=1

The path 6 = 6(t) that minimizes the total energy E = E(B) necessarily satisfies the Euler—Lagrange
equations. Here these take the form of Lagrange’s equations of motion.

d| oL d

&\ -, | o,

6(W

for each j = 1,2,...,n. In the following, we use g!l (the inverse FIM) to denote symmetric positive matrix gj;
(FIM) (where i,j = 1,2,..,n) so that:

n
. 1, i= ]',
z glk 8kj = 8” = (0 = {0 otherwise. ®)
k=1 '
Lemma 1 (GEs). Lagrange’s equations [6] of motion for the Lagrangian,
de
L=L (e, —), 9
i )

are given in local coordinates by the system of ordinary differential equations.

20, ~on . (d8)) oy
4" i (20 (L) 10
dt2 +z,~,k=1r"k<dt ( dt) 0. (10)



Information geometric analysis of the dynamics of transient M/M /% queue manifold 338

i

)

where the quantities [ are known as the Christoffel symbols and fori,j,k = 1,2,..,n.

By the above definition, it is clear that the GEs are interpreted physically as the Information Geometric
Equations of Motion (IGEMs), or the Relativitstic Equations of Motion (REMs), or the Riemannian
equations of motion. At this stage, it is important to note that this report is the first time ever which sets
ground breaking discovery of the IG analysis of transient queueuing systems in comparison to that of non-
time dependent queueing systems, namely IG analysis of stable queucues [2], [7].

Definition 7.

I. Under the 6 coordinate system, the o — curvature RiemannianTensors, Ri(].o‘k)1 [1] are defined by

R = [0 — o) g + (G TR - T Tk ) bik Ls p=123,.om (1)
where Fi]j((“) = Fig,? gsk

II. The o — Ricci curvatures (Ricci Tensors) RS:) are determined by [1]

(@ _ p@® il
Ry = Rijklg] . 12)
III. The a — sectional curvatures Ki(;‘j) are defined by [1]

(@)
(@ Rijij

= =
o (gii)(gji) - (gij)z
Specifically, if n = 2, the a — sectional curvature Kiozolz = K@ is called « — Gaussian curvature and is given

by [1]

1,2, ...,n. 13)

R(a)

K@ = Naziz_ (14)
det(gll)

IV. The Riemannian Tensor [1] is simply contracted to create the Ricci Tensor [8].

V. The degree to which a geodesic ball's volume on the surface varies from a geodesic ball's volume in
Euclidean space is known as the Ricci Curvature Tensor (RCT) [9] of an oriented Riemannian Manifold M.
The evolution of volumes under the geodesic flow is contracted by the RCT [10]. The Bonnet-Myers
theorem [10] states that when RC is positive, the Riemannian manifold has a smaller diameter and is more
positively curved than a sphere.

Fig. 3. Ricci Curvature Tensor visualization [11].
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Definition 8. A certain category of ruled surfaces called developable surfaces can be mapped onto a plane
surface without causing any deformation to the curves; each curve drawn from such a surface onto the flat
plane retains its original shape [12].

Fig. 4. Developable surfaces [12].

Definition 9 ([13]). A function is well-defined if it gives the same result when the representation of the input
is changed without changing the value of the input.

Definition 10 ([14]).

I. Function f is said to be one-to-one, or injective, if and only if f(x) = f(y) implies x =y for all x, y in the
domain of f. A function is said to be an injection if it is one-to-one. Alternative: a function is one-to-one if

and only if f(x) # f(y), whenever x # y. This is the contrapositive of the definition.

II. A function f from A to B is called onto, or surjective, if and only if for every b € B there is an element
a € A such that f(a) = b. Alternative: all co-domain elements are covered.

III. A function f is called a bijection if it is both one-to-one (injection) and onto (sutjection).
Theorem 1. [15].

Let £ be a function that is defined and differentiable on an open interval (c,d).
Iff'(x) > 0 forall x € (c,d), then fis increasing on (c, d). (15)
Iff'(x) < 0 forall x € (c,d), then fis decreasing on (c, d). (16)

Taylor expansions [16] are widely used to approximate functions by expansions. We have for all x around
zeto,

n

In(1 +x) = Zw (1)1 ’% a7
n=1

1 [o'e}
— = ano(—n X0, (18)

2.4 | Important Inequalities [17]

I.  Chebyshev inequality.

X
— < < > —1. 1
1+X_ln(1+x)_xforx_ 1 (19)

Eg. (19) can be rewritten as

1
1—;Sln(x)£x—1f0rx2—1. (20)

II. Lehmer inequality
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L <X t1<eforallxn>0. 1)

3| The Fim and Its Inverse for the Transient M/M /o QM

In queueing theory, a discipline within the mathematical theory of probability, the M/M/%© queue [18] is a
multi-server queueing model where every arrival experience immediate service and does not wait.

The transient probability of the M/M /0 queueuing system with Poissson arrival rate £ [19] and exponentially
distributed setvice time with mean IE
A -
[g (1—e " A

Pa() = =————exp {—E(l e},  n=012,..

and atrival rate A is given by
(22)

It has been pointed out by Conolly and Langaris [20] that one of the best-known Bessel function forms for
the time-dependent state probabilities in M/M/1/% queueuing system is given by

e~ OO 3 > .
Q®) = =" ) mE () @3)

m=n+1

Theorem 2. For the transient formalism of M/M/c queueuing system, we have

[g] (Eq. (1)) reads as

0 a b
[gi] = [a d; g], (24)
Il h r
where
a= Eiz(n +téle ¥ —1). (25)
1
b= e (& + g B[ts + £+ &]). (26)
d, = %(2 — [1 + tg][tg + 2]e™%). 27)
g= %([xz — 28] + e B[NE — 2MEE + AtE2 — 24 — AE2t2E — AtE?]). (28)
1
=5 (=& + e %[t + ). (29)
h= @ [(1+E)e ®—1]. (30)
1
r= o (8 — A& — 2188 + 2A82)
+ e "B[E(AMEE + ME? + MEE + 3AEE + A E2 + A& — AE) — (E[tE + ] So)
— 25)(AEtE + A8% + A% — A D).
Provided that, refers to the temporal derivative %.
IFIM reads as
ij7 _ adjfgi] _ A B L _ N = (—a(lo — _
[g"]=—1*=[D; E F[A=det([gy]) = (—a(g—ar) +b(ah —1dy)), (32)
G H I

where
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—&)
B (hb; ar) (34)
(ag —bd,)
_ (e bdy) (35)
p, = U8 - ar) (36)
_ (=Ib)
B= S
_ (ab)
F= "0 %)
(ah —1d,) (39)
_ (8
H= e (40)
= &9 (1)
A

Proof: following Egq. (22), we have

_Ft A _e—ft n
L(x;0) = ln(pn(x; 9)) = In <u {__(1 —Et}) = ln([z(l © )] ) _
A B 42
{g(l —e, @

0= (91'62'63) = (A' E' t)-

Hence, we have

y(e) = %(1 —e %) (43)
Thus,

0= =t(1-e™),0,= = g(A+8e™-1),05= = Z(Og-28) + s
(AEEt + AE2 — NE+ Az)e-it).

9,0, = 0. (45)
0,0, =0,0, = EZ( 1+tgle”® —1). (46)
0,0, = %3(2 — [1 + tE][tE + 2]e~%). 47)

0205 = 3 ( 208 — NE] + e E[AE? — 2ALEE + AtEZ — AE — AE2L2E — AtE® + 20E— 2A8]).  (48)
(Ag — 2A8)

030, = g [(1+E)e ™ —1] # 9, 0, (49)

0,05 = E—Z(—E- + g B[tE + £+ £]). (50)
1

030, = E—z(—z- +Ee B[te +E]) # 9, 05 (51)

0305 =

(52)
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E%(O\"EZ — AEE — 2MEE + 2AE2) + e B[E(ALEE + AtE2 + AEE + 3AEE + V€2 + A& —
AE) — (E[t5 + ] — 25) (AL + A2 + A5 — AD)]D).
Therefore, the FIM, is obtained (Eq. (24)).
We write IFIM as
0 a b
[gV] = [gy]7t == ]ig]] = ransposz( ovleb_ %transpose(Cov [éll il g])- (53)
r
0 a b (rd; —gh) (lg—ar) (ah—ld)
(Cov[a d g]) = | (hb—ar)  (=Ib) (1a) ()
1 h r (ag—bd;) (ab) (—a?)
Thus,
(rd; —gh) (lg—ar) (ah—1ld,) A B L
[g¥] = %transpose(cov (hb —ar) (—1b) (1a) |=[p, E F| (Egs. 33)-(39)
(ag—bd;) (ab) (—a?) G H 1

Notably, the symmetry requirement should hold for FIM. Meanwhile, it is observed that FIM (Eg. (24) of
Theorem 2) is not symmetric, since 0, 03 # 03 0, and 0, 03 # 03 ;. This raises many open problems on such

novel phenomenon and shows the significant impact of time as a coordinate in the potential function (Eg.

(44)). it is inevitable to investigate under what conditions will FIM be symmetric. The following theorem

answers this question.

Theorem 3. For the transient formalism of M/M/% queucuing system, as time approaches infinity, FIM (Eg.

(24) of Theorem 2) is symmetric. The converse statement is not always true.

Proof: it is sufficient to prove that if t — oo,

62 63 = 63 az and 61 63 = 83 61.
Cleatly if t—0, it holds that
(A —2)%) 3

limt—»oo a2 a3 = limt—»oo a3 a2 = —llmt_,oo 01 63 = limt—>oo 63 61 = _E_Z

&3
Consequently, the corresponding FIM given by

1 3
0 8 g
1 A 1
Bil.="2  F & (28 —29) ,
§

—5 F@E XD F(F - — 20 +2057)

which is symmetric.

(55)

(56)

To investigate the necessity requirement: let 9, d3 = 830, and 0,93 = 93 d;. This generates the following

two sets of equations.

213([27@- — NE] + e B[AtE2 — 2MEE + ALE? — AE — AEZE2E — AWE® + 20E — 2)E])

_ 0g-29)

= [(1+&De % —1],

and

(57
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1 1
g (e E +E+E]) = 5 (-E e +8]), (58)
Eq. (58) reduces to:

e;—f (Vg2 — 2AE + A2 — A§ — ME2H25 — M + 205 — 208] = HE [+ q0e ] (59)
This implies:

-

) (60)
[AHE2 — 2MEE + AMEZ — AE — AE2L2E — AtE® + 24 — 228] =(AE — 2A8)) (1 + &), (61)

Similatly, Eq. (59) reduces to Egq. (67) and

E[te + 8+ 8] = E[te +¢]. (62)
Clearly, it follows from Egq. (67)

Either t — oo or & - co. (63)
Eg. (62) generates the following differential equation.

[At€2 — 2ALEE + AtE2 — A& — AE2t2E — Atg3 4+ 208 — 2A8] — (Mg —228))(1 + &) = 0. (64)
It could be verified that A = 0 and § = 0 are two solutions of Eg. (65).
The reader can check that Eq. (63) reduces to

§les +&+8] = &lts +&],or & =0. (65)

It could be verified that § = constant is the closed form solution of Eg. (66). Proof completed.

Theorem 3. For the transient formalism of M/M/00 queueuing system, as time approaches infinity, [g9]; e
(Eg. (33) of Theorem 2) does not exist if and only if one of following requirements is satisfied:

£ — o0, (66)

or whenever 2, are solutions of the following differential equation.

[AEE- + 2A82 — A-E2] = 0. (67)
Proof: following Matrix Algebra, [gV]i-o does not exist if and only if A[gi]-]t_)oo =0, [gij]t_m(Eq. (57)).
Therefore, [gV];-e will never exist if and only if

11 [ g2 _ yEEe — 9y R 22 Lo -2 (B S A (5 Lo —

sl ((xz N = 20 + 2087) (= ) + 5 (A5 = AD) (Ez)] ela(e) @

1

SIGIEY
equivalently

1 2 2

E—7 [AEE + 248 — A€°] = 0. (68)

Hence, A[g; j]m = 0 if and only if
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1, (©9)

or

[AE + 2A82 — A§%] = 0. (Eq. (68))
Clearly, Eq. (70) implies § — oo (Eq. (67)).

It could be verified that A = 0 and § = 0 are two solutions of Egq. (68). Moreover § = 1 in Eg. (68) implies
A" =0, which has the closed form solution, A = ¢; + c,t a family of families of temporal straight lines. As time
reaches infinity, the arrival rate in this case becomes infinite. This completes the proof.

In the following section, the components of a (or V(®)- connection are obtained and it will be shown that
the algebraic structure of this connection is no longer symmetric as in the non-time dependent case. This
unexpected phenomenon is justified by strong impact of the time coordinate relating to the time-dependency.
Also, it is shown that for sufficiently large temporal values (i.c., t = ), the generated special case of a (or
V(®)- connection is symmetric. All these genuine contributions are new to the knowledge to both IG and
queueing theorists. These calculated expressions are needed to obtain the corresponding GEs of the
parametric coordinates of M/M/% QM.

4| The a (or v@)-Connection of the Transient M/M /o0 QM

4.1| The Obtained I‘igka) Expressions (Definition 5) of the Transient M/M /o QM

By Definition 5, the reader can check that

M= 0=T{ =I5} = L=, (70)
ris) = o. (71)
r’s) = 0= % (72)
i) = (1;—30‘)’5 [1- (1 +E)e ). (73)
ris) = (12;30‘) (& + e [tg? — 2tEE — £ — E2t%E — t€3 — 2E]) # [0, (74)
Mgy = (12;300 (2 = [1 + &][tg + 2]e). (75)
5% = S22 (8% — §5) + e S[E( + 62 + 55 + 3565 +§) — (¥[g +§) - 6
28) (&5 + & + £)1D).

Iy =iy = Q-9 e B(t282 + 2(1 + 1)), (77)

283
Engaging the same approach, the remaining I‘igi? expressions can be obtained.

5| The a (or V(®)-Connection of the Transient M/M /o0 QM When
Time Is Infinite

5.1| Geometry of M/M/©0 QM as t —»

Now, we are in a situation to reveal the significant temporal impact on the overall IG analysis of the underlying
M/M/% QM. This would be clear as time approaches infinity and in this phase; the FIM will be symmetric
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which not the case was before as time was not infinite. This also reflects upon the paths of motion of the

corresponding GEs of motion for each coordinate of the undetlying M/M /0 QM.

Setting t — oo in Egs. (25)-(31), we have

1
a=— 2—2,
E.
b = _E_Zl
2\
d1 = E_3
- 2]
= = :
E.
1 - _E_Z'
(22§ —AF)
h = E—3'
(W8 — Mg — 2VEE + 2082
r= = ,
with
_ (rdy —gh)
=7
_ (hb—ar)
b=
_ (ag—bdy)
==
_ (g—ar)
Dy=—7—
_ (—1b)
=5
_ (@b)
F= A
_ (ah —1d;)
=
_ (8
H= o

1= 52, A = det ([gy]) = (~alg —ar) +b(ah — 1d; )).

(78)
(79)
(80)

C1)
(82)
(83)

Co))

(85)
(86)
@87)
(88)
(89
(90)
o1
(92)

93)

5.2| The I‘il].‘(“) Expressions of the Arrival Rate Coordinate, A of the Transient

M/M/© QM Corresponding to Infinite Temporal Values

1()
r‘110(

1(a)
r‘120(

1(a)
r‘210(

1(a)
r‘130(

=0.

1 —_
_ 2230‘) (2D, + EG).
1-a
26
1-a

=5 (@D + (25° — 56

(2D, + 2GE).

4

(95)
(96)

7



Information geometric analysis of the dynamics of transient M/M /% queue manifold 346

Hence,

1
G¥)=§§(Hh+(%2—EEM) (98)

1 —

e = 223“) (28D, + (282 — &), 99)
Gy):(2é®(QA&—&Dy+QkE—6K)®. (100)
I3 = S22 (A% + (X5 — 605D, + [(5(28h — A% — 24%) — B(E — A% — 246 + (101)
2282)]G).

1 —
i = ng‘) (2A% — 65D, + (E[2A8" + A% — X — 35[24 — AE)G). (102)
T = 2 (BAQE? — 88 + (X5 + 205 + A5+ 3(kg — 206)E)D; +

(103)
(B8 = ABE™ — 3MEE + 3AEE) — 3E(WE — NE — 2VEE + 2069))G).

Similarly, the remaining components at infinite temporal can be obtained.

6| The IMEs of the Coordinates the Transient M/M /% QM When
Time Is Infinite

6.1| The IMEs of the Arrival Rate Coordinate, A of the Transient M/M /0 QM

The Information Matrix Exponentials IMEs) (Eq. (7)) corresponding to the arrival rate coordinate, A of the
transient M/M /o0 QM are

d?et
dt?

1(0) (dO') o)\ _ ..
+ T (dt) (G) = 04j=123.

Now, we are in a situation of trying to find the path of motion of family of families of IMEs corresponding
to the arrival rate coordinate, A.

d2a

@2, d, dg
dt?

35 (2D1 +£G) + 555 (2D + 2GE) ()R +l5 (2D1 + (287 — §)6)) 55 (2D, +

(287 = §6)6)) 1(gD (G + 57 [((2A% — 60Dy + (0% ~ 6XE)G)] ()% +555 (245 +

(225 = 6XE)D; + [(§28N" — A" — 20E) — 3AF — A" — 2XE + 209)]G) +

+(

1 dg, dt. 1 ) (104)
2z (2A88 — 68D1 + (B[208" + A% — A-§] — 38[2A8 —AEDG) ] () (D + G GA2E” —

§6) + ((-VE+ 208 + AE)E+ 30 — 208)E)D; + (EA-8 — ABE~ — 3XEE + 3AEE) —

2

38 (M8 — A8 — 20 + 2289)6) (3) 1=0.
Without any loss of generality, let § = 1, so Eg. (707) reduces to

[A*G+ (1 — D)X+ 2A'D4] = 0. (105)
At§ =1, Egs. (79)-(86) reduce to
2z 1 (106)
b= 0. (107)
d; = 2A (108)
= X, (109)
1=0. (110)

h=—2x. (111)
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r= A (112)
This implies that Eg. (97) and Eq. (94) reduce to

_(g-a)

D, e v 1. (113)
(ah—-1d;) A

= = _ 114
G n = (114)
Az A (115)
Consequently,

A.

A (}\—) +2h =0= 2~ +21) =0. (116)

Eg. (119) impliesA = 0, with a closed form solution A = constant. This explains that A = constant
characterize the path of motion of the atrival rate coordinate of M/M/%© QM. By Eq. (119), A~ +2X7) = 0.
Let A= ke', Y3 4+2Y2=0=Y%(2+Y) = 0 implying Y; , 3 = 0,0, —2. Therefore, we have the closed form

solutions represented by the family of families,

A=K + Kt + e 2 117)

This supports a strong evidence that the corresponding paths of motion of the arrival rate for the Poisson

arrival rate § = 1 are devised by family of families A = constant. This explains that A = constant or A = x; +

Kyt + ke 2t

6.2| The IMEs of the Poisson Arrival Ratecoordinate, § of the Transient
M/M/% QM
The IMEs (Eg. (7)) cortesponding to the Poisson arrival ratecoordinate, § of the transient M/M /o0 QM are

4202 | 1(0) (dO') O\ ..
dt2 +F1] (dt)(dt)_oplil—l,z,g.

Now, we are in a situation of trying to find the path of motion of family of families of IMEs corresponding
to the Poisson arrival rate coordinate, §. As t = oo, we have

= o. (118)
" = %(ZE + £ H). (119)
MA@ = G2 (2E + 2H8). (120)
e = % (2E + (28 — &) H). (121)
i = (12;300 (28E + (28% — E)HH), (122)
I = % ((2B§ — 6AE + (21 — 6A5)H). (123)
9 = o (2BE + Ve~ GO+ (200 28 = 208) = 3OV E MG~ NE + 1
222)]H).

12 = L9 e 6eR + (5208 + A€ — 18] — 3E[2AE — AEDH), (125)

2¢t



Information geometric analysis of the dynamics of transient M/M /% queue manifold 348

2 = 829 (5B(282 — £8) + ((—AE+ 208" + M)+ 3(ME — 2AE)E)E +

28 (126)
(B8 = ABg~ — 3N + 30E) — 3F OV — MG — 2VEE + 2§2)H).
Setting A = 1, we have
a=— (127)
=
b= ‘zi (128)
2
d = 5 (129)
g= z_f (130)
- -g. (131)
28
h = & (132)
r= CED g et ([gy] = 2. (133)
r2® = o (134)
I = 253 (2E + §H). (135)
r2® = (2E + 2HE). (136)
s = Zgg (2E + (28 — &)H). (137)
r5® = 223 (28E + (287 — E)H). (138)
Y = 24 - ((BE - 3E + (~30)H). (139)
e = 2§4 (2B% + (—68)E + [(5(=%) — 3(8% — & + 282)]H). (140)
r5® = 254 (2BEE — 6EE + (§[2] — 3E[25H). (141)

155" =5 L (EB(2E? — E8) + (2606 + 3(—28)E)E + (E(—56~) — 36(—§6 + 262))H).  (142)

2% )+(( 13 +ZE )))

(hb-ar) ((gs)(

B= (= _ i —g (143)
26
E.Z
_(-lb) @& g%
Pe == 9
(1a) §_4 £2
. |
=23 === "% (149)
E6

The resulting IMEs corresponding to A = 1 is represented by family of families of paths of motions given
by
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(84 (& ((Be— 3E + (=38)H) (£) + [ (2BE + (~6E)E + [(5(~) -

307 - 5+ 28D)IH) + 57 (2B — 65E + (§[28] - 35[28DH) () + [ (5B(2g2 - (146)
€ + (2898 + 3(=28)8)E + (§(-8~) — 35(~8& + 26))H)|= 0.

By Egs. (107)-(148), we have Eq. (149) in the form:

G+ G (<§3 -3(55) + -39 (- %))) (L) + b 288 + (—60) &) +
[(5(-5) — 38 — & + 289)](-55) + 75 (28 — 66 () + 28] -
328D(-E59) 16D + [ (8282 - ) + (@805 +3¢-29)8) ED) +
(58 - 35(-8 + 289) (- 25)|=o0.

The complicated Eg. (750) can be rewritten in the form:

(147)

242 (E) 4 Lis + o) + (285 -8 — 6821 (-D) + (288 —6() +
(25 - 6ED(- N 1@ + 55 [(5@8? — g0 + g -8 + gy —gp - (149)
: £\ =
65 (-9)|=o0.
We can put Eg. (757) into the more compact form:
[2875% + 28582 + [(288 + (-68)(8%) + [28 — &2 — 68°](=)) + (28& —6(8°) +
(285 — 682)(—8) 1(5) + [(8 (287 — &8 + (288 — 65%)(5%) + (355% -85 — (149)
65%)(~5))] = .
The family of families of constant paths of motion of the Poisson arrival rate given b y, § = constant provide
a closed form solution of Eq. (157)n .

6.3| The IMEs of the Temporal Coordinate, t of the Transient M/M /o QM

The IMEs (Eg. (7)) cortesponding to the time coordinate, t of the transient M/M/% QM are:

d?e® | _1(0) (dOh) 4ol ..
dt2 ij (dt) (dt) =0Lj=123.

Setting A = 1,§ = n + ¢t, ) and g are any real numbers

-1

a= (150)

b= _Eiz’ (151)
2

“=g (152)
25

5= -2 (153)

I=— Eiz (154)

h = g (155)

Lo (156)
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with
-1., 26 G\, 2
L= Gebdy @R 4 (157)
A A AES
(@ab) s
F=—= > 158
A AR (158)
_ ()1
=== T (159)
| E—4' (160)
r2® = 24 5 (L - 3F - 3q), (161)
P2 = 5 (L —3F — 3¢1), 162
32 §4 S ( )
(@ = (EL 3F — 3¢]). (163)
33 5’4 S
The IMEs of time, for A = 1,§ =1 + ct are given by
a‘t 3(0) (d§ 3(0) 3(0) 3(0)
T (§) () a0+ () () =0
ot
3(0) (dg 3(0) 3(0) 3(0)
rs (a) +T50 + @O + 15 (§) = 0
implying either
¢ =0,0or§ =mn = constant, (164)
or
30 430, (30
FZ32(0) (di) n F3(0) n F3(0) n I‘3(0) 0,0rn = (j_i) _ _( 33 iio) ) _
22
(r§g°)+r§§°)+r§§°)) B E%(L—SF—SQI)+§%(LE—3F—SQI)+§—i(EL—3F—3gI) (165)
- 30 - EL—3F—3G1 -
22 24-
_ g(L—3F—3§I)+§(LE—3F—3§I)+g2(EL—3F—3gI) (L—3F-3¢D)+(LE—3F—-3¢I )+G(§L—3F— 3qI)
EL—3F-3l —S EL—3F-3l
This implies:
¢=0,0or§=mn=constant. (c.f,, Eg. (166))
ot
, (L—3F=3¢D)+(L§-3F-3¢1)+¢(§L—3F-3¢l) _
14 SL—3F—al =0. (166)
Following Egq. (168), we have
(L—3F—=3¢I) + (LE—3F — 36l ) + ¢(§L — 3F — 3gI) + §L. — 3F — 3¢l = 0. 167)
Consequently, it follows that:
25
FEsl2- s+t = (168)

Eg. (170) holds if and only if
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¢ = 0,0or & =1 = constant. (169)
or

1 : I . 1
AT = 0, equivalently § — oo, which is equivalent to A= 0. (170)
or
[2 — &+ 28] = 0. A7)
By Egq. (174), we have

§dg
— = 2dt. 172
1+¢ (172)

It could be verified that Eg. (775) has a closed form solution devised by

(£ + 1)e? = Ze~2t, for some constant . 173)

The obtained result in Egq. (176) is quite new and interesting as it shows that for sufficiently large temporal
values, this generates two unexpected values of the Poisson arrival rate, namely , £ = —1 or § —» —oo.

At this stage, we need to provide more analysis of the obtained result.

2=0.  (Eq. (173))

We have by Eq. (152)-(158) and Egq. (96),

A = det ([g;]) = —42—3. 174)

Combining Eg. (173) and Eq. (177), implies either § = 0or¢ = j—i — oo, This means that within the obtaind

phase of Eq. (173), either the Poisson arrival rate vanishes, or we will be in a situation where the corresponding
velocity of the Poissonian arrival rate is infinite.

7| The Threshold Theorems for the Potential Function of the
Underlying Transient M/M/0oQM

7.1| The Threshold Theorem for the Potential Function, TTPF

Based on the Preliminary Theorem (PT) , the threshold theorem for the potential function, (Eg. (44) of
Theorem 2) corresponding to each coordinate is devised.

Theorem 5. For the obtained potential function W(0)(Eg. (44) of Theorem 2), the following holds
I. W(8) is forever increasing in A.
II. W(8) is never increasing in A.
III. W(8) is never decreasing in &,
IV. W(8) is forever decreasing in € for all A, §,t > 0

V. W(8) is forever increasing in tif and only if § > 0 and temporal values satisfying:

(A€ — ?\E')egt > (—AEEt — AE2 + A€ — AD). (175)
VI. ¥(8) is never decreasing in t.

Proof:
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1. We have

a v v

0, =2 = %(1 —e),0,= T2 = ?((1 +éeft—1),0,= 2 = E%((/Tf —A8) + (A& + 284 +
xE— AE')e‘ft).(c.f., Eq. (45))

It holds that d; > 0 if and only if one of the following statements is true:

£>0and (1-e™¥)>0. (176)
£<0and(1-e7)<0. (77)

The second statement is impossible since it contradicts the fact § is positive. So, we have to accept the first

statement, Fq. (179) implies €%t > 1, which is always true for all £t > 0. This proves L.
As for

II. 9, < 0if and only if one of the following statements is true.

£>0and(1-e%) <. (178)
£<0and(1-e%)>0. (179)

The second statement is impossible since it contradicts the fact § is positive. So, we have to accept the first

statement, Fg. (182) implies e%* < 1, which is never true for all £t > 0. This proves IL.

III. 8, > 0 if and only if one of the following statements is true.

zlz > 0 and ((1 + e 5t — 1) > 0. (180)
zlz < 0and ((1 +E)e ¥ — 1) <0. (181)

The first statement is impossible since it contradicts the fact § is positive. Since, Eg. (783) implies
( (14 &)e s — 1) > 0, implying (1 + &) > €%, a contradiction always true for all§, t > 0. Moreover, we have
to reject the second statement, since %2 < 0 is never permissible. This proves III.

To show

IV. 9, < 0if and only if one of the following statements is true.

2&2 > 0 and ((1 +E)e ¥ — 1) <0. (182)
Elz < 0and ((1 +E)e —1) > 0. (183)

The second statement is impossible since it contradicts the fact that A,& > 0. So, we have to reject Eq. (186).
The first statement, Eq. (186) implies ((1 + Et)e % — 1) < 0, implying (1 + &) > %, which is always true
forall &t > 0. Also,%2 > 0 holds for all A,& > 0. This proves IV.

b4

V. Wehave dy = 2= E%(Ovi = AE) + (WG + AE2 — L€ + A§)e™). So, 05 > 0 if and only if one of the

following statements is true.

fiz > 0 and ((,1-5 — )+ (AEEL+ AE2 — XE+ Af-)e-é't) > 0. (184)
Elz < 0and ((x-z —AE) + (AEEt +AE2 — AE + )us-)e-it) <0. (185)

We have to reject Eg. (188) since Eiz < 0 is non- permissible. As for Eq. (187), Elz > 0 holds. Furthermore,
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((,1-5 — ) + (AEEE + AE2 — A& + Af-)e—ff) > 0 implies

(NE — AE)eft = (VE — AE) (1 +E+ g +oe ) = (VE—AE —ABEt+ ) > (186)
(—AEEt — AE2 + AE— AD).
Hence, (V€ — AE)e¥t > (—AEEt — AE2 + A€ — AE) holds. This proves V.

VI Wehave 93 = = = %((%E = AE) + (AEEL+ AE2 — € + A§)e ™). So, 5 < 0 if and only if one of the

following.

statement is true:

& > 0and ((RE = 28) + (AEET+ A8 — AE+A5)e ™) < 0. (187)
Elz < 0and (A% — AE) + (AEEL+ AE2 — € +A5)e ™) > 0, (188)
We must reject Eq. (191). Eq. (190) is true sincegl2 > 0 holds for all &£ > 0. Moreover, we have

(5= 28) + (Mgt + 287 — g +A8)e ™) < 0. (189)

Let&=1= At = 0. This provides a counter example generating the inequality,

1<0. (190)

A contradiction. Therefore, VI holds.
In what follows, PAR = & = Poissopn Arrival Rate, AR = A = Arrival Rate, PF = Potential Function = ¥(0)

7.2.1| Numerical experiment one

Y(O) = A(1 —e1).

THE IMPAGT OF AR ON PF OF M/M/INFINITY QM. PAR =1,1=1

1,1=1

PF OF MMANFINITY QM, PAR

1 2 3 4 5 6
ARRIVAL RATE=AR

Fig. 5. Visualization of the impact of arrival rate on the potential function.

The numerical observation in figure 5matches the analytic result of Theoren 5.
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THEIMPACGT OF PAR ON PF OF M/M/INFINITY OM, AR =1=1

07

1.t=1

PF OF MIMANFINITY QM, AR

01

POISSON ARRIVAL RATE=PAR

Fig. 6. Visualization of the impact of Poisson arrival rate on the potential function.

Fig. 6 provides an evidence of the forever decreasability phase of the PF in the Poisson arrival rate, which
agrees with the analytic findings of TTPE.

TEMPORAL IMPACGT ON PF OF M/M/INFINITY OM, PAR =1= AR

1.0
09
0.8
0.7
06
0.5
04
00

1= AR

PF OF MIMANFINITY QM, PAR

0 10 20 30 40 50 60 70 80 90 100
TIME()

Fig. 7. Visualization of the temporal impact of arrival rate on the potential function.

As observed from Frg. 7, the potential function, PF is forever increasing in time, which agrees with the analytic
results.

8| Some Algebraic Properties of the Potential Function, ¥(0) = %(1 —
e

Theorem 6. The three-dimensional potential function ¥(8) = %(1 — e ) (Eg. (44)) is generally not well-
defined.

PrOOf: let Ai, Ei, tl N i= 1,2 be SuCh thﬂt )\1 * )\2, El * Ez, tl * tz. Let l‘p(}kl, El’ tl) = l'p(Az, Ez, tz). ThlS lmphes
M —Ety) _ A2 —5,t

(1—emhf) =22(1—e5k), (191)
1 2

Egq. (194) directly implies:

[% - 2_2] ; [g_ze—zztz - g_ie—m] _o. (192)

So, Egq. (195) holds if and only if:
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AN G AD RS S G A
Clearly Eq. (196) is satisfied if and only if:
—1)m
( m!) M2 ED™ ()™ = 1 ED)™ ()™, m = 1,2, .... (194)

It can be verified that Eg. (797) will generate the following sets of equations:

m=1= )\ztz = )\1t1. (195)
m =2 = [A8,(t2)* — A& (t)? ] =0. (196)
Engaging Fg. (198) and Eq. (199) yields

Aty (Eaty — §3ty) = 0 = Aty = 0 (which implies A_1 t_1=0, or A_1=0 (contradiction), or t_1=0).If t_1=0, then this
implies by Eg. (7198) that either A_2=0 or t_2=0).

In brief, this implies that either all the temporal values are set to zero, which is a contradiction. Moreover, the
other possibility is to allow the arrival rate values to be zero, another contradiction .To this end, we have

&2tz = &1ty (197)
The reader can check that after some manipulation,
m =3 = §;t, =&ty or&t, + & t; = 0 (contradiction). (198)

Based on the analytic results, we can have Ay # A,, & # §,,t; # ty and W(Ay, &1, 1) = (A, §,, t2) will hold.
This means that W is not well-defined.

Several emerging important special cases of Theorem 6 are obtained in the following theorems.

Theorem 7. For constant values of A, §, the three-dimensional potential function ¥(8) = % (1—e¥(cf, Egq.

(43)) satisties the following:
1. W is well-defined.
II. ¥ is onto.
III. ¥is One — to — One.

IV. W has aunique inverse, ¥ 1 given by

PIAED) = — %m (1 - t—f) (199)

Proof: for constant values of A, §, define t;, i = 1,2 be such that t; # t,. Thus, ¥ (4,¢,t;) = ¥ (4, ¢, t,) implies:
A A

3 3

Hence, it follows that:

%(e_itl —e ) =0 o %(contradiction) or e"84 = e~%% equivalently t; = t,. (201)
This proves (1).

For every arbitrary % (1 — e7®), for constant values of A, § there exist a unique triple (A, &, t) such that the that

th representation W(8) = %(1 — e7%) exists. Therefore, W is onto.
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It suffices to show that for constant values of 4, &, it holds that:

YA Et) =Y\ Et) ot =t,. (202)
=: follows by (1).

&:t; =t, implies WA, §,t;) = P(A, & t;). The proof is immediate.

Combining (2) and (3), ¥ is bijective with a unique inverse, namely ¥~*. To obtain ¥, let

A
w(o) = E(l —e78t) =y. (203)
Hence, it follows that
- 3 - 3 . 1 §
(1—e%) = Ty =ett=1- Ty’ equivalently, t = —Eln (1 — Ty) (204)

Following Eg. (207), we get
- 1 gt
Pl = —¢ln (1-5) ef. Eq. (202)

Theorem 8. For constant &, t — oo the potential function W, 3 (0) = %(c.f., (3.23)) satisfies the following:
I. Wy, (0) is well-defined.
1. W¥,,(0) is onto.
1. ¥, () is One — to — One.

IV. W,,(6) has a unique inverse, ¥} given by

YA = 2%, (205)
Proof: following a similar approach as in Theorem 7, the proofs are straightforward.
Theorem 9. For constant A, t — o the potential function W, £(6) = %(Eq. (43)) satisties the following:
L. W is well-defined.
1. W, is onto.
II. W ¢ is One — to — One.

IV. W, has a unique inverse, ¥ given by

-1 _ i\
Yo (®) = 3 (206)

Proof: following a similar approach as in Theorem 7, the proofs are straightforward.
Theorem 10. For constant A, the potential function Wg(0) = % (1 — e 8 (c.f,, Eq. (43)) satisfies the following:
I. W () is well-defined if and only if the temporal values are constant.
II. W (6) is onto.
II. W:.(6) is notin general One — to — One.

IV. W (6) has a family of families of inverses, Wg; and they are existing uniquely if and only if the temporal

values are constant.

In this case,
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‘V{tl ® =5

Such that, € satisfies:

A[Z (_E)m;n&] —1=0. (207)
m=1

Proof: let &,t; , i = 1,2 be such that § # §,,t; # t;. Let WA, &, t;) = (A, &,, t,). This implies

A A

2 (1 - e—51t1) == (]_ — e_EZtZ)_ (208)
&1 &2

Eq. (201) directly implies:

[i“] [_e £t __e wl]) = 0. (209)

For the Necessity, if the temporal values are constant, then t; = t, holds, which implies by (Eg. (272), that
§1 = &, since A = 0 is non permissible by the hypothesis. Therefore, W (8) is well-defined.

For the sufficiency, let Wg(0) be well-defined, then it is never permissible that:

§1 # &2t # ty toimply W(A, &1, t1) = W(A, &, t2). (210)

So,t; = t; and & = §, hold. Assume that there is some tp, such that & # §,,t; # ty, to imply W(A, &y, t1) =
W(A, &2, tm). Then, we get a contradiction to the hypothesis of well-defindness of Wg((0) .Thus, § = &;,t; =
tm= tz. Therefore, the temporal values should be constant. This completes the proof of (1).

The proof of (2) is straightforward.

It suffices to show that for constant values of A, we have for any arbitrary &, &, ty, t,

Lp(}\' El tl) = l.lJ(}\’ El tZ) = El = EZ and tl = tZ' (211)
Following the proof of (1), the necessity condition holds if the temporal values are constant. Furthermore,
the sufficiency condition implies that W(A,§,t;) = W(A,§ t,) = & = §,, which holds if and only if t; = t,.
Repeating implies the same procedure iteratively would imply ¢; = t, = t3 = t, = ---. This provides an evidence
that all the temporal values are constant.

The first part of the proof of (4) is clear. Now, assume that all the temporal values are constant. Then, of

course, there should be a uniquely defined and determined inverse, namely, W, et Wi (8) = %(1 —e %) =

z, then it holds that

E(1 _ [Zm o tE)m]) — % _ [2?3:1 (—1)m_2(§)m_1(t)m_1]. (212)

m!

Therefore, the inverse potential function, Wg,! is devised by

=" 2mm

m!

‘Pgtl = the roots of the equation A [Z;’Iﬁ:l ] —1=0.c.f, Eg.(210)

Theorem 8.6 For constant &, the potential function W (0) = %(1 — e~ (cf,, (3.23)) satisfies the
following:

I. W¥,.(8) is well-defined if and only if the temporal values are constant.

II. ¥, (8)is onto

III. W, (0) is notin general One — to — One.
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IV. ¥,.(6) has a family of families of inverses, ¥;} anditis existing uniquely if and only if the temporal values

are constant.
In this case,
A8
(1—e %y

Proof: following the same technique as in Theorens 10, the proofs can be easily done.

Yre @) = (213)

The following section provides the threshold theorems of the derived inverse of the potential functions (Eg.
(202), Eq. (208), Eq. (209), Eq. (216).

9| The Threshold Theorems of the Derived Inverses of Poten-Tial
Function, IPFs

Theorem 12. For the derived inverse, ¥~ (t) = — %ln (1 - —) (Eq. (202)), we have

L. ¥~(b) is forever increasing in t if and only if:

(<t (214)
3

II. W(t) is never decreasing in t.

Proof:
I. We have
13 1
CLAON & S S (215)
ot ( _ﬁ) - (1_§) -8
A A
By the preliminary theorem (PT)(c.f., Eq. (75)), W1 is forever increasing if and if 20, Following Eg.

(215), this holds if and only if (A — &t) > 0. Surely, it is implied that i) holds.

(t)

Engaging the same approach < 0 if and only if > =, but this 1rnphes xS 1, which violates the
continuity of W~(t). Hence, ii) fo]lows.
Theorem 13. For the obtained inverse, ¥ 5(A) = A§ (c.f., Eq. (208)), we have

L ‘P;,’l;‘ (%) is forever increasing in A.

1I. ‘P;,’l;‘ (Mis never decreasing in A.
Proof

I. We have

RN ON

— (216)

By the PT (Eq. (15)), W5, () is forever increasing if and if °°’1(D

since § is always positive.

> 0. By Eq. (216), this is satisfied generally

The proof of II follows since § is never negative.

Theorem 14. For the obtained inverse, ¥} (§) = % (Eq. (209)), we have
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1. ‘P;o_lf (&) is never increasing in &,

1I. ‘PO_O_IE(E) is forever decreasing in &.

Proof
I. We have
GO
=i ® _ A (217)
0% &
-1
By the PT (Eg. (15)), W5 (§) is forever increasing if and if aw:%;(a > 0. Following Eg. (217), this never holds

since ¢ and A are always positive. This proves i).

The proof of 11 is immediate.

A%

Theorem 15. For the obtained inverse, W5 (A) = e (Eg. (216)), we have
L ;! (}) is never increasing in A.
1. W5t (A) is never decreasing in A.
I11. ‘P{tl (M) is forever increasing in t if and only if
t> 1ln (1 + E) (218)
3 A
IV. W' (Q) is forever decreasing in t if and only if
t< 1ln (1 + E) (219)
3 A
Proof
1. We have
alp}:tl(x) = 6 et > 0(since  is always paosive,t > 0). (220)

A (l—et) (-1
By the PT (Egq. (15)), Eq. (220), it follows that Wy ¢ (A) is forever increasing in A .This proves I.

The proof of ii) is immediate.

aq;)t—'tl ) _ 2(7\'(1 — e_Et) + )\Ee—it)

221

at (1—e"8)2 221)
By the PT ( (Eq. (15)), it follows that W5 { (A) is forever increasing in t if and only if:
7L'(1 — —Et) +Ae75(E) > 0 ivalently, A > A e = A ; (222)

e e (¢ , equivalently, d—et Me&E—1D)
Eg. (222) could be re-written in the form:
AE . 1 AE

(eEt - 1) >3 equivalently, t > Eln (1 + 7)' (c.f., Eq. (218)) (223)

Hence, 111 is done.

As for 1V following the PT (Egq. (15)), Eq. (221) it follows that W5 ! () is forever decreasing in t if and only
if
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_ _ . ge 3
A(1—e %) + Ae™¥ (%) < 0, equivalently, ' < )\(1 o = }L(ezt D (224)

Eg. (223) could be re-written in the form:

A . 1 A
(e —1) < f, equivalently, t < Eln(l + %). (Eq. (219))

10 | Numerical Experiments on the Threshold Theorems of the Derived
Inverses of Potential Function

10.1| Numerical Experiment on Theorem 12

We have, the inverse of the potential function, IPF = $7(t) = — %ln (1 - %) (Egq. (202)). Let the arrival rate,

13N 1,or equivalently, t > 0.5,

AR= A = 0.1, the Poissonian arrival rate = PAR = £ = 0.2, then % =0.2. If T

then ¥71(t) - oo.

TEMPORAL IMPACT ON IPF. AR = 0.1. PAR= 0.2

177 1ISTITFST

0.2

+ 155. 115717757

4+ 133.1157 17757

4+ 111. 115717757

4+ §9. 115717757

+ &7 115717757

+ 45. 115717757

INVERSE OF POTENTIAL FUNCTION,IFF, AR = 0.1, PAR

+ 23. 115717757

0.14 0.1s .z 0.26 - 0.4z 046

T Ll
TIME Ct2
iTools.SubhashBose .comsgrapher

Fig. 8. Temporal impact of arrival rate on the inverse potential function.

As we can see from Fjg & that the inverse of potential function, IPF is forever increasing for all the temporal
2 . .
values less than the threshold = o where both A,§ are constants. These experimental results agree with the

analytic findings of Theorem 12.

12.2 | Numerical Experiment on Theorem 12

We have, the inverse of the potential function, IPF = ‘P;,‘l;\(l) = A§ (c.f., Eq. (208)). PAR = & = 0.2.
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IMPACT OF ARRIVAL RATE.

.

0.2, TIME APPROACHES INFINITY

L 0T2E

- NG5

- 0STS

- 0325

- 035

- 0275

AR ON IPF.PAR = ©.,2_ INFINITE TIME

INVERSE POTENTIAL FUNCTION,IRF, PAR:

.13 0. 16 0.19 n.z2 .25 0.28 .31 .34 0.37
+ : + + : + + »
t + t t + t t »

ﬂIRRI'v'ﬂL RIﬂTE, AR
iTools.SubhashBose .comAgrapher
Fig. 9. Visualization of the impact of arrival rate on the potential function, for infinite time.

Fig. 9 shows that the inverse of potential function, IPF is forever increasing with respect to the arrival rate,

for infinite time and constant Poissonian arrival rate. This agrees with the analytic results of Theorens 16.
10.3 | Numerical Experiment on Theorem 14

We have, the inverse of the potential function, IPF = W2} (8) = % (Eg. (2098)). AR =1 = 0.1.

IMPACT OF PAR ON IPF-.AR = ©,.1_.INFINITE TIME

.
F n.a7

LT

0.1, TIME APPROACHES I

a0l

INVERSE POTENTIAL FUNCTION,IPF, AR

4 T L
+ + ¥ »
POISSONIAN ARRIVAL RATE. PAR

iTool s . SubhashBose comAgrapher

Fig.10. Visualization of the impact of Poisson arrival rate on the inverse potential function, for infinite time.

Fig. 10 shows that IPF is forever decreasing in PAR = Poissonian arrival rate, for constant arrival rate and
infinite time. This agrees with the analytic findings of Theorens 17. It is also clear that,

A
YO =~ 0as Eo o

10.4 | Numerical Experiment on Theorem 15

We have, the inverse of the potential function, IPF = W ! (Q) = % (Eg. (216)). PAR =& = 0.2.

Part one: let t = 5.
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IMPACT OF ARRIVAL RATE. AR OM IPF.PAR = 0.2 . t = 5

-

- 11SBFASEH1Y

0.2, t=8

L
T
=

L 1NFEFESI414

L
T
=

- 09163953414

L
T
=

L OTEBFASIH1G

L
T
=

L METEIESI414

INVERSE POTENTIAL FUNCTION,IPF, PAR:

- OS5E39534 14

.19 .22 .25 .25 .31 n.34 0.37

ARRIVAL RATE. AR

iTools . .SubhashBose ccomsgrapher

Fig. 11. The impact of atrival rate on the inverse potential function, for t = 5, Poisson arrival rate = 0. 2.

As observed from Fig 77, Wy +(A) is forever increasing in A. This shows that both analytic and numerical

results match .

Part two: let € = 0.2,A = e®Dt e have the threshold to be:

3 x 0.2 0.1e©@Dt ) T 02 0.1e(0-Dt

TEMPORAL IMPACT ON IPF. PAR = 0.2, AR = EXP{0.1t)

130495051

ERP0.LL)

- 043495051

0.2, iR

4 0.35E435051

4 0.SEI4A5NS 1

=

- TE2495 05!

L
T
=

- 5A5S495051

INVERSE POTENTIAL FUNCTION,IPF, PR

L
T
=

- E05495051

(0.1t (0.0t
2in(1+3) = —In (1 + “e—) =LIn (1 + ﬁ) = In(3) = 5.493061443.

1= 5.8 =3 O S

T Ll
TIME <t

iTools . .SubhashBose . comsSrapher

(225)

Fig. 12. The impact of arrival rate €*1¢, on the inverse potential function, Poisson arrival rate = 0.2.

As observed from Fig. 12, Wi (2) = (1_175_ is forever decreasing whenever time is less than the threshold

D)
and it starts to increase when time is greater than the threshold.
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11| The a — Gaussian Curvature, Kgg)of Eq. (14) as Time Approaches
Infinity

Theorem 18. The a — Gaussian Curvature, K as time approaches infinity is devised by

K@ _ (1 — WAEE (208 — A5+ 24 — H)(48% — &)
® (A8 — AEE — 4N EE + 4AE2)° '

(226)

Proof: we have
(@ _ s(a) s(o) () pB() () B
Riji = [(airik — 0il )gsl + (FjB,l i T )]

where Fi]]-((“) = Figf;‘) g

Therefore,

sk

(@ _ () () () B () B
R10;12 = [(62F1S1a - airzsla )gsl + (Fjso,cl Fua - F1130,(1 r‘210( )]

r /0 a
(S0 + 8 4 129] = 2T 4 1369+ 12597 (o 1)

(o) p1(e) (o) p2() () p3() () p1() () p2(e) () p3()
.+([F21,2F11 +F22,2F11 +F23,2F11 ]_[F11,2F21 +F12,2F21 +F13,2F21 ])

‘ (227)

(_ (12;300 % [(2D; + 2GE) + (2E + 2HE) + (F + IE-)]) (a+d; +h)
(1-a ) 20 —a)f 1 e
_FO (2= [1+&][tg + 2]e™) e (2E + 2HE) + 2—3[1 = (@ +8)e "] (F + IE‘)])
Ast— o
1
- (229)
b= ;—f (230)
22
0w-2 (231)
NE— 2)E
_ E§3 3 (232)
= E_E —b. (233)
h = (ZXEE—S‘“) (234)
22 ATE. _ 99.TE 2
L (A8 — AEE 2327\ §& + 2A8 )_ (235)
A, = (~a(lg - ar) + b(ah - Id,))) = LEAEIAELE (236)
w (—(12;53“)% [(2D; + 2GE) + (2 + 2HE) + (F + 1§)]) (a+ d; + h) -
e - S22 (1 552 @ 4 2m5) + X F 4 1))
We have
= = @)
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Recall that:
— 5 — (g—an+(ah-1d ¥ _ E2(A-§2-AEE—21EE +4A5%)
I= (2D1 + ZGE) - Ao - A-E2—AEE-—4A-EE+4AE2 (237)
1 .
— =&+ _]
20 -b] 25 Tptte (238)
2E + 2H¢) = = =0.
1 1 1
NEEEICE 1R 1D
ab-ag) “gCEite (239)
F+IE) = = =0.
(F+15) = = -
Combining Eg. (236), Egs. (34)-(36), we have
R _[(_ (1—a)(27\§‘—7\'§+27t—5)i[(A"EZ—AEE“—ZA'ZE*ME'Z)])]
1212,t—>0™ 284 OA " AE2AEE—4NEE+4AE2
_ [(_ (1-@) (2AE -1 E+20—) (482 —EE") [(x--zz—Azs--—4A-§§-+4A§-2)—(A--§2—xzz--—zx-§§-+4xg-2)])]
Bl 2g* (A=A —4A B +40E2)? (240)

_[(a= 0@ -5+ 20— prgz? - 5)
\TEeE - aw s )]

Based on our calculations, the a — Gaussian Curvature, K((: ) as time approaches infinity is devised by:

(© [<(1—a)(zxz-—x-£+z>\—£)>\-£-(4£-2—EE--))]
K@ Riz12toe0 _ 3 (A-E2—AEE-—4A EE +4A52)2 _
co Aoo - 71"52_7155"_471'&"*'4’715'2 -
57
(1-a)AEE*(2AE—AE+21-E) (482 —EE")

In the following theorem, the zeros of the a — Gaussian Curvature KS,") are determined. Based on this, the
paths of motion of the coordinates at which the underlying QM is looked at as a developable surface are

obtained. The following theorem presents a novel approach which unifies IG with Riemannian Geometry,

the theory of developable surfaces and the theory of time -dependent queueing systems.

Theorem 19. The undetlying M/M/%© QM is developable on the following trajectoties:

a =1, or A =constant or £=constant or A=£=0 or £=9,e*1t or A= a;,(§—2a;) = a,e?a1 oré =

2t
as, (21 — a3) = a4e 9s.

for any arbitrary non-zero real constants 9,95, a;, a; and asz, a,
Proof: K¥ = 0 ifand only if

(1 — OXEE* (452 — E5) (25 — A&+ 20— §) = 0.

If and only if one of the following equations holds:
l1-)=0=a=1.

A = 0 = A = constant.

& =0 = ¢ = constant.

*=0=E=0.
(452 —g5) = 0=
PR

§ &

(241)

(242)

(243)
(244)
(245)
(246)

(247)
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Eg. (247) which has a closed form solution
49§ = §, (248)

where 9_1 is an arbitrary constant.

Eq. (249) has the closed form solution:

£ =9,ett, (249)
where 9_2 is an arbitrary constant.

(A —2E+20-8) =0 (250)

It is clear that A = 0 and & = 0 are two closed form solutions of Eq. (250). We can try another closed form
solutions of FHg. (257), for example, let A = a; for any arbitrary non-zero real constant a;. This implies:

(Ra; &€ +2a;, -8 =0 =>2a,& =&—2a;, = : d;a = ;Tt = In(§ —2a,) = i + Ina, for some arbitrary non-
- 1 1 1

zero real constant a,. Therefore, we have the closed form solutions of Eg. (257) to be given by

t
A= a;, (§—2a;) = aze?as, (251)
Moreover, we can deduce more closed form solutions of Eq. (257), for example, let § = a3 for any arbitrary

non-zero real constant dz. This implies:

dr 2dt 2t
T = = = nRA—a3) = T + lna, for some

arbitrary non-zero real constant a,. Therefore, we have the closed form solutions of Eg. (257) to be given by

(—xazg+21—a3)=0 = daz=—-(2A—a3)=

2t
£= az (2L —a3) = aze %. (252)

12| RCT, (r¢myand the a — Sectional Gaussian Curvatures of M/M /o0

QM F M/M/o QM As Time Approaches Infinity

In this section, the RCT of M/M/o0 is obtained. These calculations are needed in the following sections.

@ R @
N Rll,oo R12,00 R13,00
_|R® R@® p@
(RCT) - R21,oo Rzz,oo R23,oo :
- R@O RO p@

31,00 32,00 33,00

Which is a nine-dimensional tensot.

12.1| The First Component, R\

)

Theorem 20. For the undetlying M/M/oo QM, the first component of the RCT as time reaches infinity,

()
Rll,oo'

o 1-— 4 2 - )\
R = e ey (57206 — A6+ 20— 9] - K51 +5))

+ (205 + DOE — 2% — 34T +206%)] - [£2*)
+25(-208 + 25— 20+ )] + BED).

Proof: recalling from Eg. (228)-(234), that
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1 =¥ _2x . [AE-2AE] . -E _@AE-AD) | (WEP-AEE -2 EE+2A82)
E_z;b—z_z;d1—z_3;g— E3 ;l_;g-_z_brh_ 53 ) - E3 )
AE2-AEE —4NEE +4AE2
= (—a(lg — ar) + b(ah — 1d,))) = 2E2& = iy
We have
24 1, (2AE-AD), _ (2AE-AE+2A-F)
(a+d1+h): E_3_EZI §3 = E3
R(ﬁ?oo = R(1o;)11,oo:(=’11'Oo + R(102()11,oof:~’21’Oo + R(10;)11,oozc-531'OO + Rﬁ)u,ooglz'oo + Rgoi)13g13'm
+ R(1(;)12,ooz‘-522'Oo + R(1oé)13,ooz‘-523'00 + Rgo%z,oogn’oo + R(10§13,oog33'00-
We have

() _ () () () B () B
Rijkl - [(6]{‘5(“ - airjia )gsl + (I‘iﬁo.(l G = I‘1[30.(1 r}k )]

where I} = {9 i,j, ks = 1,2,...,n.
() — () (o) () pB(@) (o) pB(@)
R1111,t—>oo - [(alrlsla - alrlsla )gsl + (F1g,1r‘11 - r'1[(;(,1F11
() — () (o) (o) pB(@) (o) pB(@)
R10;13,t—>oo = [(61F151a - 61F151a )853 + (F1g,3r11 - r'1[(;(,3F11
() — () () (a) B (o) B ()
R102(11,t—>oo = [(62F1S1a - alrzs1a )gsl + (Fzg,lrlla - Flg,lrzla )]

)=o
)] =0 = R(l(;)lz,oo'

0 0
= (S + T2 + 1) = — @3 + T2 + 1)

03
(o) B (o) pB(@)
+ (Fzg,lrlla - 1“1[(;(,11“210( )]

(0= 2 =% op. 4268y + Y 2E 4 2me) + S 2F 4 21
—[(a—z()—ﬁ(?( 1+ 2GE) + 20 (2E + 2HE) + 20 (2F + E))

_mﬂ=g%;QK%ﬂm+E+F+(H+G+D@H.

4 Ny 0 [E — 28 — 2088 + 42E2)
_ 220§ (5 — 4887
87 - 288 — 458 + 4250)?]

Hence,

@ 2(1 — WAEQEE — 48 (E + 1)

e TR 0eE — A5 — 4L + 42|
() — () () (0) RB() () B
R1o3(11,t—>oo - [(63F1S1a —0105;" )g51 + (Fsg,1r11a - F1g,1r21a )]

_[20 - orgE - DA +5)
T EaT - —aw T

R@ 21— ) [2§ (€8 — 482248 — 2§ +24 - )
1312,to0 — 23 (/1..52 — A& — 4N EE + 415.2)2 :
p@ (-l B - 4EDE
1213,to00 — Ez (A..Ez _ }\EE _ 47\'&' + 4_)&.2)2 :
R (- AE2 (58 — 482)8
1313,to00 — Ez (A..Ez _ }\EE _ 47\'&' + 4_)&.2)2 :

Therefore,

(253)

(254)

(255)
(256)

(257)

(258)

(259)

(260)

(261)
(262)

(263)
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RiTe = RiZi1,0D1 + Ri311eG + RiPip B + RiJ50F + RiZ,oH+ Rl
R® (1 — o) (205 — A5+ 21 — H)AE (482 — E8") .
e E (A8 — MG — 4AEE + 4A52)?
2(1 — oA E (8 — 452)(1 +§)
2(1 — Mg (85 — 482) (& + 1)
LA-o[ g -sdr ] 369
§ |8 — AZE — 4LEE + 4AE2)?
N 2(1 — o) [AE(5E — 45%) (208 — A+ 24— F)
& (A& — AEE — 4AEE + 4AE2)?
N (1-0a) AE2 (8 — 4828 D
§ (A8 —AFE — 4NEE + 4A52)2]
(-1b) -2
E = Aoo = 7\"EZ_AEE"_‘I'}\'EE"'"I’;\E'Z. (265)
_(ah—1d;) _ rE
= A,  AMEE—AEE — 4ANEE + 4AE2 (266)
_ (g—ar) (W8 — A% — 3085 + 2A8%)E
Po="% = AE2 — GG — 4ANEE + 42 (267)
F= (ab) %3 (268)
A AEZ — AEE — ANEE + 4AEZ
_ (a) _ 3
H= . = xe g —ane + ane? (269
(-a%) g
= e = T e (270)
Based on the above complicated calculations, we have
p@ _ ([(Q = )(AF — AE+ 22 - DAL (452 — &) —§?
e ™ (-2 — AEE — 4NEE + 4AE2)2 A-E2 — AEE- — 4NEE + 4NE2
2(1 - AE (5 — 4551+ %) [ Ag ]
(A& — AGE — 4AEE + 4A82)? [ [A-§2 — AEG- — 4AEE + 4AE2
N 2(1 — A (&5 — 452 + D] [(A5? — A5 — 3188 + 2482)
fd-a AE2 (8 — 4828 ' 3 ]
(82 — AEE- — 4NEE + 4AE2)2 [ [A-82 — AEE- — 4MEE + 4AE2 27)
+2(1
— o (2§ (5 — 452) (205 —A§+ 24— B)] 3 ]
Pl R -k + aaeD? | g - agg — 4agg + 4082

i L 1 |
T N — 4k + 47| AT - —ang + a4l
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= a-a ([=82QA8 = 2§ + 22 = HAE (482 — §8)]
(W57 =155 — 426¢ + 1252

+ 22288 (58 — 48 (A + )]

22556 — 46 (E + DS — 258" — 3488 + 228)]

#5368 — 4EDE + 26256 — 452 = A€ +24 = )]

~ 2~ 4],

= e (£ — 26+ 20— D] - 241+ £))

+ 26 + DOV = 2667 - 348 + 2269)] - [£7¢°)
+[26(=248 + 2 =22+ O] + [£6°D).

This completes the proof of our theorem.

Remember that the Riemannian manifold is more positively curved than a sphere and has a smaller diameter
whenever the RC is positive, according to the Bonnet Myers theorem [10]. Using this information, we will
launch a new way of thinking that creates a decision-making process for the situation in which the manifold's
diameter is less and the underlying QM is more positively curved than a sphere.

This could be obtained by calculating the zeros of the first component of the RCT as time approaches infinity,

(RCT) > namely, Rg?m . Stated otherwise, this open question is resolved by the subsequent theorem.

Theorem 21. The zeros of R(ﬁ?m (Eg. (274)) is one of the following:
I. =1, in other words, whenever the curvature parameter is set to unity.
II. The equation of motion of the Poissonian arrival rate, € is governed by the temporal path.
E=9,e*t Ey (249
III. Z=constant.
IV. A=constant .

V. The dynamics of both of arrival rate and the Poissonian arrival rate is governed by the equation.

t
A = c et + ¢, , & = constant, c; and ¢, are any two non — zero real arbitrary constants. (272)

VI. The dynamics of both of arrival rate and the Poissonian arrival rate is governed by the equation.

(t—§+c3)\/§
§ = tan |~————|,A = zero and c; is any non — zero real arbirary constant. (273)

Proof: we have

REY, = U B ([—62(208 — A+ 24— ] - [205(1 + £)] +

[2(8 + DA-E — Ag% — 3AEE + 2A8%)] — [£28*] + [25(—2A8 + 1§ — 22 + D] + [£8°]).

Cleatly, Rﬁ?m: 0 if and only if one of the following statements holds:

(1-a)=0. (274)
(45% — &) = 0. (275)
£ =0. (276)
A =0. (277)

(=820 =A%+ 22— )] — [2A8(1 + )] + [2(F + D(A-E? — A — 3XEE + 2A852)] —
[£28*] + [28 (=208 + AE— 22+ )] + [§E°D = 0.
Clearly Egq. (248) implies 1.

(278)
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It has been proven that the exact solution of differential Egq. (248) is determined by
£ = 9,e*1t (Eq (250)

This proves II.

The proofs of IIT and IV are straightforward.

Following

([=52(2A8 = AE+ 20— D)] = [2K5(1 +§)] + [2(5 + DOVE — A5 — 3AF +206%)] -
[£28*] + [25 (=228 + A5 — 24+ §)] + [§8°]) = 0. (c.f,, Eq. (287)

Let § = constant. This reduces Egq. (257) to

(279)

28t —1) =0. (280)
which implies § = 0 or

AE = (281)

. t
(equivalently, d}% = %) These yields A = cye¥, which has a closed form solution:

t

A = ci8ed + cy. (Eg. (275))

with non — zero real constants ¢, c,

This proves 5).

Moreover, plugging A = 0 in Eq. (252) yields

0 = [(—58%) — §2*+285 +88°] = §[(—588) — §5*+28+8°]. (282)
It can be easily seen that (282) generates § = 0 or § = constant

or
[(—58) — £8+2+E2] = 0, implying
5
_2+E (2%, &) 283
JERN VWA i A o
V2

Integrating both sides of Eg. (283), we have the exact solution of of the form

E.

\/%tan_1 (\/—EE) +§ = (t+c3)or \/%tan_1 (\/_EE) = (t - 2—2 + C3),C3 is any non —

zero real constant.

(284)

This rewrites Eg. (284) to the compact form

(t—§+c3>\/§
§=tan|*————| (£, Eq. (276)

This proves V.
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R(®

11.3 | The a — Sectional curvatures,Ki(].Oi‘j) = m,i,j =1,2,..,n
ii) (85— (&ij

The « -Sectional Curvatures as time approaches infinity are given by

R®
g@ _ ik (285)
ijij, o0 A,

The reader can easily check that

Kgololl,oo =0= Kgololz,oo = Kgolt)13,00'
(286)
.22 _ . AY.EE 2
A, = (—a(lg —ar) + b(ah —1dy))) = Mg~ A% E;M 8 + 4N
(@ _ Rine _ [201 - QM@ — 45)(E + DE] (287)
1211,00 — A, - i (7\"52 _ }\EE _ 4;\.22. + 4;\2.2)3 _'
(@ _ RiSne _ [201 - QM — 451+ DE] (288)
1311,00 — A, - i (7\"52 _ }\EE _ 4;\.22. + 4;\2.2)2 _'
(@ _ RS _ [201 - kB — 452205 — AE+ 21~ DE* (289)
1312,00 — Ao - i O\"EZ _ )\’EE _ 4‘)\.55 + 4)\5.2)2 )
v _ RS _[201 - M — 45D +EE (290)
13110 T AT T | T (B — AEE — 4AEE + 4AE2)?
(@ _ Rigige [ (- )P — 458 291
121300 7 AT T | (A8 — ABE — 4AEE + 4AED)2|
K@ R(f?m,oo [ = )nE? (e — 4528 (292)

1313,00 — A, - 0\..22 — AEE- — ANEE + 4)\5.2)2 )
The remaining 72 a-Sectional Curvatures can be obtained by following the same procedure.
13| Conclusion

The research done for this paper offers a fresh method for modelling the IG of a queuing system. From the
petspective of IG, the manifold of the temporary M/M/% queue is described in this context.

In summary, the current work provides a giant step ahead to the establishment of the contemporary theory
of relativistic IG of transient queues. There are several avenues of future work. To start with, we are going to
extend this novel approach to many existing transient queueing systems. Also, another interesting path is to
investigate the Information geometric analysis of the overall dynamic of time dependent distributions in
Physics and Quantum Mechanics.
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