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1|Introduction    

Charnes et al. [1] proposed Data Envelopment Analysis (DEA) model, for the first time, for performance 

evaluation of several similar Decision Making Units (DMUs) that use multiple inputs to produce multiple 

outputs. In this model it is supposed that the values of inputs and outputs are exactly known. However, the 

exact values of inputs and outputs may not be available or cannot be exactly measurable in many real 

applications. So, these values are imprecise that includes ordinal data (weak and strong), bounded (interval) 

data, ratio bound data, and so on.  
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Abstract 

Data Envelopment Analysis (DEA) is a mathematical programming for performance evaluation of a set of similar 

Decision Making Units (DMUs). In DEA model, it is supposed that the values of inputs and outputs are exactly 

known. But, in many real world problems these values are imprecise in form of ordinal, bounded data, and so on. 

Until now, different approaches have been proposed to calculate the relative efficiency in presence of ordinal data 

in DEA. The focus of this paper is on weak ordinal data. The paper briefly reviews the existing methods in this 

area and explains some drawbacks of these methods. We show that converting ordinal data to some special exact 

data and ignoring the DEA axioms lead to these drawbacks. In fact, when data are in ordinal format, there are no 

observed data, and so the inclusion of observation axiom, the first axiom in DEA, is not established. To overcome 

the drawbacks and because of the necessity of observation axiom, we propose a new algorithm based on generating 

n random dataset for the ordinal measures such that the relations among the ordinal data will be satisfied. By 

considering the inclusion of observation axiom, it will be shown that this algorithm leads to the better result 

comparing with existing approaches. Several numerical examples are used to explain the content of the paper. 

Keywords: Data envelopment analysis, Efficiency measure, Imprecise data, Ordinal data. 
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  For the first time, Cooper et al. [2] used the bounded and weak ordinal data in DEA and named the new 

model as Imprecise DEA (IDEA), which was a nonlinear and non-convex model. They used the unit-

invariant property of DEA and converted the nonlinear model into an equivalent linear model through the 

scale transformation and variable alterations. Their method has three shortcomings\problems: 

I. The high volume of calculations. 

II. Necessity of an exact maximum value for scale transformation in interval data. 

III. Only the upper bound efficiencies are calculated and the lower bound efficiencies are not considered. 

Cooper et al. [3] removed the second problem by introducing some dummy variables. Cooper et al. [4] applied 

the IDEA approach to evaluate the Korean Mobile  Telecommunication Company. Kim et al. [5] used IDEA 

for performance evaluation in Telephone offices. Lee et al. [6] extended the IDEA concept to the additive 

DEA model. They used a simple variable alteration to convert the nonlinear IDEA model into an equivalent 

linear model.  

Despotis and Smirlis [7] proposed a method to calculate the lower bound and upper bound of efficiency 

scores through an appropriate variable alteration. They developed two linear programming to estimate the 

lower and upper bound efficiencies by considering the pessimistic and optimistic state for each DMU. In fact, 

the efficiency score for each DMU is an interval in their method. They categorized DMUs in three groups, 

efficient (the lower bound efficiency score is equal to one), weak efficient (the upper bound efficiency score 

is equal to one, but the lower bound is less than one) and inefficient (the upper bound efficiency score is less 

than one). 

Zhu [8] showed that the scale transformation (normalization of data) in [3], [4] method is redundant. He used 

a simple variable alteration to convert the nonlinear and non-convex IDEA model into an equivalent linear 

model. Next, he converted the bounded data into the exact data and showed that the efficiency score for the 

exact data is equivalent with the result of solving the nonlinear IDEA model. He converted the weak ordinal 

data into the bounded data to calculate the relative efficiency with this type of data. The proposed method by 

Zhu [8] eliminated the volume of calculations of [2] method. Zhu [9] used the method for performance 

evaluation in Korean Mobile Telecommunication Company. Park [10] reduced the volume of calculations of 

[3] method by using a simple variable alteration, which was the same as the variable alteration proposed by 

Zhu [8].  

Wang et al. [11] showed that [7] used different production frontiers to calculate the efficiencies. They claimed 

that a unique production frontier should be used to evaluate all of the DMUs. This frontier attains by 

considering all DMUs in the best situation. Then, they proposed two linear mathematical programming to 

obtain the lower bound and upper bound efficiencies (in presence of interval data) by considering a unique 

(fixed) production frontier for all DMUs. For calculating the efficiency score with ordinal data, they converted 

this data into interval data. Finally, they proposed a minimax regret-based method to rank interval efficiencies. 

Kao [12] emphasized that the efficiency scores should be imprecise in presence of imprecise data. He 

proposed two mathematical programming to calculate the lower bound and upper bound efficiencies in 

presence of ordinal and bounded data. His method uses different production frontier for each DMU similar 

to the [7] method. To consider the ordinal data, he set a lower bound and upper bound for each ordinal data 

after normalization.  

Park [13] used the concept of supremum and infimum and proposed a mathematical programming for 

calculating the lower bound efficiencies. He also used different production frontiers to calculate the 

efficiencies. After calculating the efficiencies, he categorized DMUs in three groups: perfectly efficient, 

potentially efficient and inefficient, similar to the [7]. 

Kao and Liu [14] argued that if the interval data is wide, then the interval efficiencies obtained by using 

previous methods is too wide to provide valuable information for a Decision Maker (DM) to make an accurate 

(good) decision. Therefore, they considered interval data as stochastic data and estimated the distribution of 
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efficiency score for each DMU by using a simulation method. They showed that regarding bounded data as 

stochastic data gives more helpful and reliable results than the available interval data approaches. The method 

was used to obtain the distribution of efficiencies in Taiwan commercial banks to rank them.  

Park [15] investigated the dual model of IDEA and its relationships with primal problem based on the duality 

theory in IDEA, and developed a computational method for it. Marbini et al. [16] investigated the 

performance evaluation in presence of interval data without sign restrictions. They calculated the lower and 

upper bounds efficiencies and categorized DMUs in three groups: strictly efficient, weakly efficient and 

inefficient. Chen et al. [17] presented some models to deal with Likert scale data, discrete and bounded data 

in DEA. They have used the developed DEA models to evaluate the regional energy efficiency in China. 

It should be noted that the IDEA has been used in many real world problems. For example, Asosheh et al. 

[18] developed an integrated IDEA model for evaluating and ranking Information Technology (IT) projects. 

They used Balanced Scorecard (BSC) to define the IT projects evaluation criteria, and the integrated IDEA 

model to obtain most efficient IT project.  

Toloo and Nalchigar [19] proposed an integrated IDEA model to find the best supplier in supplier selection 

problem. They used Zhu [8] approach to consider imprecise data. Karsak and Dursun [20] developed a 

supplier selection methodology by incorporating Quality Function Deployment (QFD) and DEA in presence 

of imprecise data. Khalili-Damghani et al. [21] used DEA model to evaluate the performance of combined 

cycle power plant in the presence of undesirable outputs and uncertain data. They modeled the uncertain data 

with interval data. 

The current study shows that most of existing approaches to calculate the relative efficiency in presence of 

ordinal data have some drawbacks as follows: 

I. Replacing ordinal data with some fixed integer numbers such as zero and one that leads to incorrect efficiency 

scores. It should be noted that the probability of occurrence of these fixed integer numbers is zero in practice. 

II. Ignoring the DEA axioms, so in some cases we are unable to construct the Production Possibility Set (PPS), 

and so unable to calculate the relative efficiency. 

To remove the drawbacks, we will show that treating the ordinal data as stochastic data gives more reasonable 

results. 

The remainder of this paper is organized as follows: Section 2, explains the drawbacks of some important 

existing methods for ordinal data. Section 3, proposes a new approach to calculate the relative efficiency with 

ordinal data. Numerical example and conclusion are given in Sections 4 and 5, respectively. 

2|Major Drawbacks of some Proposed Approaches for Ordinal Data 

In this section, we explain some major proposed approaches to calculate the relative efficiency in presence of 

ordinal data in DEA with their drawbacks. It should be noted that, in ordinal data we have only one special 

relation among the data, and their actual values are unknown. This type of data can be expressed as follows: 

Now consider the CCR model with imprecise data: 

i1 i2 in

r1 r2 rn

x x ... x ,

y y ... y .

  

  
 (1) 

m

r rp

r 1
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i ip

i 1

max u y ,
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v x 1 ,

=

=

=




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which ij ix θ+  and rj ry θ−  represent subset or all of the imprecise data (ordinal or bounded data). Obviously, 

Model (2) is nonlinear and non-convex. As explained in the previous section, different approaches have been 

developed to solve the model. The drawbacks of some these approaches are explained as follows. 

2.1|The Zhu [8, 9] Method 

Zhu [8] showed that Model (2) can be converted into an equivalent linear model with the following simple 

variable alterations. 

He also demonstrated that interval data can be replaced with some exact data. In the other words, when 

DMUp is under evaluation, due to maximizing the efficiency of DMUp, the upper bounds of outputs and 

lower bounds of inputs are used for DMUp and for other DMUs, the upper bounds of inputs and lower 

bounds of outputs are considered. Therefore, [8, 9] ranked DMUs based on their upper bound efficiencies. 

Some existing methods such as [2–4], [10], also ranked DMUs based on upper bound efficiencies that is not 

sufficient. To clarify the topic, consider the following example. 

Example 1. suppose there are two DMUs with ordinal input and output as presented in Table 1. Using the 

[8] approach implies that the both of these DMUs are efficient. It can be easily seen that DMU2 dominates 

DMU1 and only in one special situation, when 
11 12x x= and 

12 11y y= , that occur with zero probability, these 

DMUs are both efficient.  

Table 1. data for 2 DMUs. 

 

 

 

2.1.1. Converting ordinal data into exact data 

Suppose DMUp is under evaluation and Model (2) has been solved and the following optimal solution for the 

ordinal data has been obtained.  

In this condition, by considering the unit-invariant property of DEA, *

i ijρ x  and *

r rjρ y  are also optimal solutions 

i r(ρ ,ρ 0,for all i, r) . Thus, we can assume * *

rp ipy x 1= = , and so the optimal solution can be expressed as 

follows: 

 

m n

r rj i ij

r 1 i 1

ij i rj r

r i

u y v x 0 , j 1,...,k,

x θ , y θ ,

u ,v 0.

= =

+ −

−  =

 



 

 
 

ij i ij

rj r rj

X v x , For all i, j,

Y u y , For all r, j.

=

=
 (3) 

DMU No. Input 1* Output 1* 

1 
11x  

11y  

2 
12x  

12y  

11 12x x 12 11y y*which  and  

* * * * * *

i1 i2 i,p 1 ip i,p 1 in

* * * * * *

r1 r2 r,p 1 rp r,p 1 rn

x x ... x x x ... x ,

y y ... y y y ... y .

− +

− +

      

      
 (4) 

* * * * * *

i1 i2 i,p 1 ip i,p 1 in

* * * * * *

r1 r2 r,p 1 rp r,p 1 rn

0 x x ... x x 1 x ... x M,

0 y y ... y y 1 y ... y M.

− +

− +

     =    

     =    
 (5) 
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 M is a positive large enough number [8, 9] proposed that M could be supposed the number of DMUs. By 

using the Relation (5), [8, 9] converted the ordinal data into interval data as follows (DMUp is under evaluation): 

Then, the interval data converted into the following exact data: 

In the following example, it will be shown that the efficiency scores are dependent on the value of M. Also, 

it will be shown that the results of the two proposed methods by Zhu [8, 9] are different (the variable alteration 

method and converting imprecise data into exact data method). 

Example 2. Consider three DMUs, each uses one input to produce one output.  

Table 2. data for 3 DMUs. 

 

 

 

 

Using the variable Alterations (3) (the first proposed approach in [8, 9] shows that DMU1 is efficient. Now 

consider the second approach, when DMU1 is under evaluation we should use the following exact data for 

these three DMUs: 

Table 3. The exact data for 3 DMUs based on [8, 9], approach. 

 

 

 

The data presented in Table 3 shows that for M 6 , DMU1 is efficient and for M 6  it is inefficient. Indeed, 

based on [9] approach, if we set M 3=  then DMU1 will be inefficient, that is inconsistent with the previous 

result (the result of the variable alteration method). Also, the Example (2) shows that the efficiency score is 

dependent on the value of M.  

The following theorem shows that a DMU with a best rank in an ordinal input or output will be always 

efficient. 

Theorem 1. In Model (2), suppose the dth output of DMUs is in ordinal format and DMUp has the best rank. 

In the other words, suppose dp djy y , for all j . In this case, DMUp is always efficient (the upper bound 

efficiency score of DMUp is equal to unity). 

Proof: obviously, in the calculation of the relative efficiency score of DMUp, Model (2) could select dpy  as a 

large enough positive number and set djy ,for all j p  as very small numbers such that DMUp dominates all 

of the other DMUs. Note that a similar theorem can be presented for ordinal data in inputs. Also, a 

mathematical proof can be given as follows. 

The max-min model to calculate the relative efficiency of DMUp is as follows: 

ij rj j

ij rj j

x [0,1] & y [0,1] for DMU , j {1,2,...,p 1},

x [1,M] & y [1,M] for DMU , j {p 1,...,k}.

    −

    +
 (6) 

ij ij

rj rj

x 1, for all j p & x M,for all j p,

y 0,for all j p & y 1,for all j p.

=  = 

=  = 
 (7) 

Dmu No. Input (Ordinal)* Output (Exact) 

1 
11x  2 

2 
12x  3 

3 
13x  12 

11 12 13x x x . * ranking such that  

DMU No. Input (Ordinal) Output (Exact) 

1 1 2 
2 M 3 
3 M 12 
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Now we set r iu v 1, for all i, r= = , thus we have: 

Now, it is enough to set djy 1, for all j p=   and dpy M= , where M  is a large positive number such that the 

following relation is established. 

The Relation (10) shows that DMUp is efficient. It should be noted that, according to the efficiency definition 

in the literature of DEA, DMUp is efficient if and only if there exists at least a common set of weights 

* *u 0,v 0  , such that 

* *

r rp r rj

r r

* *

i ip i ij

i i

u y u y

, for all j.
v x v x


 

 
, this completes the proof. 

Obviously, this result is correct in theory and may not be reasonable in practice. 

Overall, the drawbacks of [8, 9] approach can be summarized as follows: 

I. Ranking DMUs only based on upper bound efficiencies. 

II. Efficiencies are dependent on the values of M. 

III. Ignoring the lower bound efficiencies and so leads to wrong ranking (Example 1). 

IV. Using only 0, 1 and M for all ordinal data and too many zero for ordinal outputs.  The probability of 

occurrence of these data is zero in practice. 

V. The result of applying variable alterations approach and converting ordinal data into exact data approach are 

not equivalent (Example 2). 

2.2. The Wang et al. [11] Method 

Wang et al. [11] used a fixed production frontier for all DMUs and proposed the following two mathematical 

programming to obtain the lower bound and upper bound of efficiency scores. 

The upper bound of efficiency for DMUp. 

r rp r rj

r r
p

u,v ε j
i ip i ij

i i

u y u y

Relative Efficiency of DMU Max Max .
v x v x

  
  

=   
  

  

 

 
 (8) 

rp rj

r r
p

u,v ε j
ip ij

i i

y y

Relative Efficiency of DMU Max Max .
x x

  
  

=   
  

  

 

 
 (9) 

rp rj

r r

ip ij

i i

y y

, for all j p.
x x

 
 

 
 (10) 

s

U

r rp
U r 1
p m

L

i ip

i 1

s

U

r rj
U r 1
j m

L

i ij

i 1

r i

u y

Max θ ,

v x

u y

s.t. θ 1, j 1,2,...,n.

v x

u ,v ε for all i, r.

=

=

=

=

=

=  =










 

(11.a) 
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The lower bound of efficiency for DMUp. 

Obviously, these models can be converted into linear models. To use the models for ordinal data, at first, they 

obtained the following relation by applying scale transformation. 

which 
rσ  is a small positive number, reflecting the ratio of the possible minimum of rj{y j 1,2,..., n}=  to its 

possible maximum that should be estimated by the DM. Now, ordinal data are converted to the interval data 

as follows: 

In fact, in [11] method the ordinal data are regarded to be equal. Let the data presented in Example 1, and 

suppose that the value of 1σ for input and output estimated by the DM, are 0.1 and 0.05, respectively. In this 

condition, [11] considered the following data for the evaluation of these two DMUs. 

Table 4. converted data by Wang et al. [11] 

method for 2 DMUs. 

 

  

 

Obviously, the two DMUs are the same always with these data, that is not reasonable. As explained in Example 

1, DMU2 dominates DMU1. It seems that the results of [2], [8–10] methods are more reasonable. The reason 

is that, based on their methods, the upper bound efficiency score of DMU1 is equal to the efficiency score of 

DMU2, but in Wang et al. [11] method both DMUs are the same in all conditions. 

2.3|The Park [13] Method 

Park [13] proposed the following mathematical programming to obtain the lower bound of efficiency score 

of DMUp in presence of imprecise data. 

  

s

L

r rp
L r 1
p m

U

i ip

i 1

s

U

r rj
U r 1
j m

L

i ij

i 1

r i

u y

Max θ ,

v x

u y

s.t. θ 1, j 1,2,...,n,

v x

u ,v ε for all i, r .

=

=

=

=

=

=  =











 

(11.b) 

r1 r2 rn r
ˆ ˆ ˆ1 y y ... y σ .      (12) 

rj rŷ [σ ,1], for all j.  (13) 

DMU No. Input 1 Output 1 

1 [0.1 , 1] [0.05 , 1] 
2 [0.1 , 1] [0.05 , 1] 

m

r rp r r

r 1

n

i ip i i

i 1

max u inf{y y D },

s.t.

v sup{x x D } 1,

+

=

−

=



 =





 (13) 
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In this model iD−  and rD+  represent the imprecise data. Inf and sup can be replaced with min and max, 

respectively. In the model the feasibility is not considered in calculation of the inf and sup. To demonstrate 

the problem, consider the numerical example used in [13]. In this example, there are 8 telephone offices with 

three inputs and three outputs. The third output is in ordinal format as follows: 

According to the Park [13] method, after normalization we have: 

Now, when DMU1 is under evaluation (calculating the lower bound of efficiency), the data for the DMU1 

and other DMUs can be calculated as follows: 

Therefore, to calculate the lower bound efficiency score of DMU1, [13] used *

3x (1,0,0,0,0,0,0,0)=  for ordinal 

data that is an infeasible solution. As mentioned, the feasibility condition should be considered for calculation 

of inf and sup. Applying the feasibility situation implies that he should use *

3x (1,0,1,1,1,0,1,0).= Furthermore, 

[13] method uses only zero and one for all ordinal data such as [12] method. As mentioned before, the 

probability of occurrence of these data is zero in practice.  

The next example shows that the lower bound efficiencies cannot be calculated by using the [13] method in 

some situations. 

Example 3. Consider the data presented in Table 2. For this ordinal data, the [13] method uses only zero and 

one that has been presented in Table 5. 

Table 5. The values of ordinal data in calculation of lower bound efficiency with [13] method. 

  

 

 

 

 

 

As it can be seen from Table 5, there are some DMUs that produce output without consuming any input. 

With this data, the efficiencies cannot be calculated, and so the ranking of DMUs is not possible. 

3|The Proposed Method to Rank Dmus with Ordinal Data 

In this section, the cause of the occurrence of the drawbacks (presented in the previous section) and a new 

ranking method is presented in presence of ordinal data.  

m n

r rp r r i ip i i

r 1 i 1

m n

r rj r r i ij i i

r 1 i 1

r i

u inf{y y D } v sup{x x D } 0,

u sup{y y D } v inf{x x D } 0 , j 1,...,k , j p,

u ,v ε, for all r,i ,

+ −

= =

+ −

= =

 −  

 −   = 



 

   
(14) 

8

3 3 34 35 33 37 31 36 32 38D {x R x x x x x x x x }.− =          (15) 

' ' 8 ' ' ' ' ' ' ' '

3 3 34 35 33 37 31 36 32 38D {x R 1 x x x x x x x x 0}.− =            (16) 

' ' ' ' ' '

31 3 3 31 3 3

' ' ' ' ' '

3 j 3 3 3 j 3 3

sup{x x D } max{x x D } 1,

inf{x x D } min{x x D } 0; j 2,3,...,8.

− −

− −

 =  =

 =  = =
 (17) 

The DMU Under 
Evaluation 
the Values of 
Variables 

Without Considering The Feasibility Considering The Feasibility 

DMU1 DMU2 DMU3 DMU1 DMU2 DMU3 

'*

11x  1 0 0 1 0 0 

'*

12x  0 1 0 1 1 0 

'*

13x  0 0 1 1 1 1 

Lower bound 
efficiencies 

Cannot be 
calculated 

Cannot be 
calculated 

Cannot be 
calculated 

0.17 Cannot be 
calculated 

Cannot be 
calculated 
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The CCR model and PPS are based on some axioms. Suppose we have k DMUs (DMUj, j 1,2,3,...,k= ) with 

n inputs (
ijx 0 , i 1,2,3,...,n= ; j 1,2,3,...,k= ) and m outputs (

rjy , r 1,2,3,...,m= ; j 1,2,3,...,k= ) such that at 

least one input and one output is nonzero for each DMU. The axioms are as follows: 

I. Inclusion of observation: each observed DMUj belongs to T, (j=1,2,…,k). T is the PPS. 

II. Free disposability of inputs and outputs: if (x, y) T, y' y,   then (x, y ) T   and if (x, y) T,x x,   then 

(x , y) T  . 

I. Convexity: if (x, y)&(x , y ) T λ(x, y) (1 λ)(x , y ) T, for all 0 λ 1     + −    . 

II. Constant returns to scale: if (x, y) T (λx,λy) T, for all 0 λ    . 

III. Minimum extrapolation: T is the intersection of all sets satisfying 1-4. 

When the data are in ordinal or bounded format, in fact there is not any observed data and so the first axiom 

(Inclusion of observation) is not established. In this situation, we cannot build the PPS. To clarify the topic, 

consider the data presented in Table 1. For this data the PPS is all of the first quarter of the area has been 

shown in Fig. 1. It could be seen that the output can be produced without consuming any input. In the other 

words, (0, y),for all y 0 , belongs to PPS, that it is not true. This fault shows that observing the DMUs data 

(first axiom) is necessary and the PPS could not be built correctly without the first axiom. 

In all of the previous methods, this problem exists and all methods tried to construct the PPS without 

observed data. So, by using the unit-invariant property of DEA, the ordinal data replaced with some integer 

numbers (zero, one or M). Indeed, these methods have not considered the axioms of DEA. 

Fig. 1. PPS for the data of Example 1. 

In the following, a new method is presented to rank DMUs in presence of ordinal data based on simulation 

(data generation) method. The values of ordinal data are unknown and only a relation is established among 

them. For considering the observation axiom, the ordinal data can be regarded as stochastic data. Because the 

probability distribution of this data is unknown, it can be supposed uniform. In this case the steps of proposed 

algorithm are as follows: 

I. Generating data with the uniform distribution (by considering the relations among ordinal data) with n 

iterations. 

II. Calculating efficiencies for all DMUs with the data obtained from Stage 1. In this stage n efficiency scores for 

each DMU will be obtained. 

III. Calculating the average efficiency score and standard deviation of efficiencies. Indeed, the average efficiency 

is an estimation of the expected value of efficiency. 

IV. Ranking DMUs based on average efficiency scores and standard deviation of efficiencies as follows: DMUj1 

dominates DMUj2 if and only if the average efficiency score of DMUj1 is greater than DMUj2. If two DMUs 

have the same average efficiency score, the DMU with less standard deviation has better rank. 
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  The proposed method can be used for other types of imprecise data such as bounded data, ratio bound data, 

and so on. Obviously, increasing n leads to obtain the more exact average efficiency. If we were able to extract 

the efficiency distribution, we could calculate the expected value of relative efficiency for each DMU. But, 

extracting the efficiency distribution is very difficult [14]. In fact, as mentioned, the average efficiency is an 

estimation of expected relative efficiency, so these values will be approximately equal by increasing the value 

of n. 

To show the revenue of this approach, consider the data presented in Example 1. The proposed approaches 

in Cooper et al. [2–4], [8–11], [13] and some other approaches, are unable to rank these DMUs correctly (to 

see the drawbacks of some these approaches for this simple example see Section 2). Now, we apply the 

proposed algorithm in this section for this example. The results are given in Table 6 for the different values 

of n. 

As it can be seen in Table 6, and also we expected, the DMU2 is always efficient. Also, the DMU1 is inefficient 

and its average efficiency score converges to 0.25. 

Table 6. The results of proposed algorithm for the 

data presented in Table 1. 

 

 

 

  

 

Remark 1. in the most of previous methods such as Park [13] and Despotis and Smirlis [7], DMUs are 

categorized into three groups after calculating the lower bound and upper bound efficiencies as follows:  

I. First group: strong efficient, the lower bound of efficiency is equal to one. 

II. Second group: potentially efficient, the upper bound of efficiency score is equal to one, but the lower bound 

efficiency is less than one. 

III. Third group: inefficient, the upper bound of efficiency score is less than one. 

Based on this categorization, a DMU1 with interval efficiency of [0.1, 1] has better rank comparing with a 

DMU2 with interval efficiency of [0.95, 0.99]. The DMU1 is efficient in its best situation. The lower bound of 

its efficiency is 0.1, but the lower bound efficiency of DMU2 is 0.95. If we suppose that the distribution of 

efficiencies is uniform, then the expected efficiencies for DMU1 and DMU2 will be 0.55 and 0.97, respectively. 

So, DMU2 is more reliable and a wise DM prefers DMU2 to DMU1. This matter shows that considering the 

efficiencies distribution and expected efficiencies gives more reasonable results. It should be noted that the 

expected efficiency differs from the efficiency obtained from the expected values of data. 

4|Numerical Example 

In this section, we apply the proposed approach in this paper and some existing approaches to efficiency 

measure of five DMUs studied in [2]. The DMUs have two inputs (one exact and one interval) and two 

outputs (one exact and one ordinal), as presented in Table 7. The interested reader can refer to Cooper et al. 

[2] for more information about this data. 

 

n Average efficiency score 

DMU1 DMU2 

100 0.2686 1 
1000 0.2543 1 
10000 0.2506 1 
100000 0.2505 1 
1000000 0.2500 1 
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Table 7. the values of inputs and outputs for 5 DMUs. 

 

 

 

 

 

The results of different approaches for this data are summarized in Table 8 with 6ε 10−= . As it can be seen in 

Table 8 and Table 10, the DMUs have different efficiency scores, and therefore, different ranks. 

The presented approaches in [2–4], [8] calculate only the upper bound efficiencies. So, based on these 

methods, DMU1 and DMU3 are efficient. By considering M 5=  in [8, 9] approach, the efficiency scores of 

five DMUs are less than or equal to the upper bound efficiencies. Applying the [11] method implies that 

DMU4 has better rank comparing with DMU3 , unlike [2–4], [8], [9], [13], [12]. The ranking based on different 

methods are summarized in Table 10. As explained before, different approaches used different values for 

ordinal and interval data and also different concept to calculate the relative efficiency. The probability of the 

occurrence of these values is near zero. Therefore, different ranking are obtained for these 5 DMUs and the 

DM will be con [fused to rank these five DMUs. 

Now, we apply the proposed algorithm in this paper to rank these five DMUs. We generated 

n 1,10,100,1000,5000=  and 10000 random data for ordinal and interval data and calculated the average 

efficiency score and standard deviation for these DMUs. The results summarized in Table 9. As it can be seen, 

by increasing the value of n, the variations of average efficiencies and standard deviations decrease. The 

variations are less than 0.01. The results show that generating 1000 or 5000 random data have proper runtime 

and can leads to reliable ranking. The final rank based on 10000 data generations are given in last column of 

Table 10. The ranking based on 1000 or 5000 data generations is the same as 10000 data generations. As it 

can be seen, the ranking is as follows: DMU1> DMU3> DMU2> DMU4> DMU5. 

Table 8. The efficiency score of 5 DMUs calculated from different methods. 

 

 

 

 

 

 

 

Table 9. The results of proposed algorithm for data presented in Table 7. 

 

DMUs 
No. 

Inputs Outputs 

1jx  (Exact) 
2 jx  (Interval) 

1jy  (Exact) 
2 jy  (Ordinal)* 

1 100 [0.6, 0.7] 2000 4 
2 150 [0.8, 0.9] 1000 2 
3 150 1 1200 5 
4 200 [0.7, 0.8] 900 1 
5 200 1 600 3 

23 21` 25 22 24y y y y y   *ranking such that: . 

DMUs 
No. 

Efficiency Score 

[2–4] First 
Approach 
[8] 

Second 
Approach
*[8] 

[11] [12] [13] 

1 1 1 1 [0.99999, 1] [1, 1] [1, 1] 

2 0.87499 0.87499 0.87397 [0.33333, 0.74899] [0.66566, 0.87397] [0.33333, 0.87499] 
3 1 1 1 [0.39999, 0.66587] [1, 1] [0.4, 1] 
4 0.99999 0.99999 0.99880 [0.33750, 0.85597] [0.74885, 0.99880] [0.33748, 0.99999] 
5 0.69999 0.69999 0.69856 [0.17999, 0.59858] [0.59858, 0.69856] [0.17999, 0.69999] 

*we set M 5=  based on [9]. 

*we suppose 
1σ 0.1= . 

N Run 
Time 
(S)* 

Average Efficiency Score And Standard Deviation 

DMU1 DMU2 DMU3 DMU4 DMU5 

A.E.S S.D A.E.S S.D A.E.S S.D A.E.S S.D A.E.S S.D 

1 0.03 1 0 0.4179 - 1 - 0.3635 - 0.4519 - 
10 0.12 1 0 0.4014 0.0787 0.8922 0.1409 0.3837 0.0245 0.3478 0.1325 
100 1.12 1 0 0.3918 0.0338 0.9351 0.1023 0.3939 0.0357 0.2846 0.1234 
1000 10.84 1 0 0.3952 0.0478 0.9414 0.1014 0.3939 0.0305 0.2947 0.1253 
5000 54.08 1 0 0.3944 0.0448 0.9403 0.1020 0.3937 0.0328 0.2945 0.1253 
10000 109.22 1 0  0.3950 0.0495 0.9401 0.1034 0.3933 0.0417 0.2941 0.1236 

*we used MATLAB 2014. 
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  Table 10. Ranking of the DMUs based on different approaches. 

 

 

 

  

 

5|Conclusion 

DEA has been used widely for performance evaluation of many real-world problems. The values of inputs 

and outputs are imprecise in most of these problems. For this purpose, many researchers have developed 

different approaches to deal with imprecise data in DEA. The focus of this paper is on weak ordinal data. 

The paper briefly reviewed existing approaches and studied some drawbacks such as infeasibility [13], 

incorrect results [11], different results for same data [8, 9] in presence of ordinal data. Most of these 

approaches allocated only zero and one for ordinal data and did not consider the DEA axioms. In practice, 

the probability of occurrence of this data is zero. It was emphasized that the DEA model and PPS are based 

on some axioms especially the inclusion of observation axiom. When data are in ordinal format, indeed, there 

is no observed data in hand, and so the first axiom is not established.  

With this type of data, we may be unable to determine the PPS correctly, and so the production frontier is 

not exist in some cases (Section 3). Also in Theorem 1, we show that if a DMU has the best rank in an ordinal 

input or output, then it will be efficient always (it’s upper bound of efficiency score is unity). This is not 

reasonable in practice, but it is correct in theory. To overcome the drawbacks and also to consider the DEA 

axioms, we proposed a new algorithm based on data generation to estimate the efficiency score in presence 

of ordinal data. We considered the average efficiency and standard deviation to rank DMUs. It was shown 

that this algorithm generates more realistic results, especially when all data are in ordinal format (Section 3). 

We also argued that ranking DMUs based on the lower and upper bound efficiencies is not reasonable. The 

presented algorithm can be used with the other types of imprecise data such as interval data, ratio bound data, 

and so on. 
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